Yoghurt is fermented milk which results from the exclusive action of Lactobacillusdelbrueckii subsp bulgaricus and Streptococcusthermophilus. However, a disruption of
the bacterial growth can lead to significant industrial losses. Currents
monitoring methods, based on the checking of the pH during the fermentation
step are not always satisfactory. The NeOse Pro system, a portable electronic
nose, is a mean to obtain immediately aromatic profiles. In this work, we
applied this technology to the yoghurt ecosystem, a highly hydrated product.
The profiles obtained allowed us to discriminate yoghurts before and after
fermentation. In detail, the discrepancy between the two bacteria cultured
alone was slight. It was also the case when we compared different initial
bacterial ratios. However, two different mixes of bacteria led to clearly
distinguishable profiles. A GC/MS analysis performed on products fermented 7h
allowed us to explain the detection of acetaldehyde by the stimulation of some
captors of the apparatus. NeOse Pro is so convenient to study the fermentation
of yogurt.
References
[1]
Fisberg, M. and Machado, R. (2015) History of Yogurt and Current Patterns of Consumption. Nutrition Review, 73, 4-7.
[2]
Heller, K.J. (2001) Probiotic Bacteria in Fermented Foods: Product Characteristics and Starter Organisms. American Journal of Clinical Nutrition, 73, 374s-379s.
[3]
O’Sullivan, M.G., Thornton, G., O’Sullivan, G.C. and Collins, J.K. (1992) Probiotic Bacteria: Myth or Reality? Trends in Food Science and Technology, 3, 309-314. https://doi.org/10.1016/S0924-2244(10)80018-4
[4]
Lourens-Hattingh, A. and Viljoen, B.C. (2001) Yogurt as Probiotic Carrier Food. International Dairy Journal, 11, 1-17. https://doi.org/10.1016/S0958-6946(01)00036-X
[5]
Zourari, A., Accolas, J.P. and Desmazeaud, M.J. (1992) Metabolism and Biochemical Characteristics of Yogurt Bacteria. A review. Lait, 72, 1-34. https://doi.org/10.1051/lait:199211
[6]
Demarigny, Y., Juillard, V., Deschamps, N. and Richard, J. (1994) Comparison of 3 Methods for the Kinetic Study of Milk Acidification by Strains of Lactococcus Lactis. Proposal of the “Vmar” Concept. Lait, 74, 23-32. https://doi.org/10.1051/lait:199413
[7]
Rizzello, C.G., Coda, R., Wang, Y., Verni, M., Kajala, I., Katina, K. and Laitila, A. (2018) Characterization of Indigenous Pediococcus pentosaceus, Leuconostoc kimchii, Weissella cibaria and Weissella confusa for Faba Bean Bioprocessing. International Journal of Food Microbiology, 302, 24-34. https://doi.org/10.1016/j.ijfoodmicro.2018.08.014
[8]
Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, I.M. and Koutinas, A. (2014) Solid State Fermentation of Food Waste Mixtures for Single Cell Protein, Aroma Volatiles and Fat Production. Food Chemistry, 145, 710-716. https://doi.org/10.1016/j.foodchem.2013.07.105
[9]
Maho, P. (2020) Reliable Chiral Recognition with an Optoelectronic Nose Biosensors. Bioelectronics, 159, Article ID: 112183. https://doi.org/10.1016/j.bios.2020.112183
[10]
Slimani, S., Bultel, E., Cubizolle, T., Herrier, C., Rousselle, T. and Livache, T. (2020) Opto-Electronic Nose Coupled to a Silicon Micro Pre-Concentrator Device for Selective Sensing of Flavored Waters. Chemosensors, 8, Article No. 60. https://doi.org/10.3390/chemosensors8030060
[11]
Masco, L., Huys, G., Gevers, D., Verbrugghen, L. and Swings, J. (2003) Identification of Bifidobacterium Species Using Rep-PCR Fingerprinting. Systematic and Applied Microbiology, 26, 557-563. https://doi.org/10.1078/072320203770865864
[12]
Atlan, D., Béal, C., Champomier-Vergès, M.-C., Chapot-Chartier, M.-P., Chouayekh, H., Cocaign-Bousquet, M., Deghorain, M., et al. (2008) Métabolisme et Ingénierie Métabolique. In: Corrieu, G., Luquet, F.-M., Eds., Bactéries lactiques, de la Génétique aux Ferments, Vol. 2008, Tec&Doc, Paris, 271-449.
[13]
Perreault, V., Britten, M., Turgeon, S.L., Seuvre, A.M., Cayot, P. and Voilley, A. (2010) Effects of Heat Treatment and Acid-Induced Gelation on Aroma Release from Flavoured Skim Milk. Food Chemistry, 118, 90-95. https://doi.org/10.1016/j.foodchem.2009.04.095
[14]
Wilson, A.D. and Baietto, M. (2009) Applications and Advances in Electronic-Nose Technologies. Sensors, 9, 5099-5148. https://doi.org/10.3390/s90705099
[15]
Monnet, C., Latrille, E., Béal, C. and Corrieu, G. (2008) Croissance et Propriétés Fonctionnelles des Bactéries Lactiques. In: Corrieu, G. and Franois-Marie, L., Eds., Les Bactéries Lactiques, de la Génétique aux Ferments, Vol. 2008, Tec&Doc, Paris, 512-594.
[16]
Fox, P.F., McSweeney, P.L.H., Cogan, T.M. and Guinee, T.P. (2004) Cheese: Chemistry, Physics and Microbiology, Volume 1: General Aspects. Elsevier, London.
[17]
Ott, A., Fay, L.B. and Chaintreau, A. (1997) Determination and Origin of the Aroma Impact Compounds of Yoghurt Flavor. Journal of Agricultural and Food Chemistry, 45, 850-858. https://doi.org/10.1021/jf960508e
[18]
Toso, B., Procida, G. and Stefanon, B. (2002) Determination of Volatile Compounds in Cows’ Milk Using Headspace GC-MS. Journal of Dairy Research, 69, 569-577. https://doi.org/10.1017/S0022029902005782
[19]
Imhof, R. and Bosset, J.O. (1994) Quantitative GC-MS Analysis of Volatile Flavour Compounds in Pasteurized Milk and Fermented Milk Products Applying a Standard Addition Method. LWT-Food Science and Technology, 27, 265-269. https://doi.org/10.1006/fstl.1994.1053
[20]
Demarigny, Y., Dalmasso, M., Tonleu, A., Rigobello, V., Beuvier, E., Ly-Chatain, M.H. and Bouton, Y. (2011) Influence of the Backslopping Practice on the Microbial Diversity of the Lactococcus Population in a Model Cheesemaking. Food and Nutrition Science, 2, 618-627. http://dx.doi.org/10.4236/fns.2011.26087