全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

注意力机制引导的多模态心脏图像分割

DOI: 10.3969/j.issn.1001-4616.2019.03.004

Keywords: 注意力机制,多模态心脏图像分割,半孪生网络,跨模态图像生成

Full-Text   Cite this paper   Add to My Lib

Abstract:

为有效挖掘模态间共享与模态特有的信息,本文提出一种注意力机制引导的半孪生网络,用于分割多模态(MRI与CT)心脏图像. 具体地,首先运用循环一致的生成对抗网络(CycleGAN)进行双向的图像生成(即从MRI到CT以及从CT到MRI),这样可以解决模态间心脏图像不配对的问题; 其次,设计一个新的半孪生网络,将原始的CT(或MR)图像及其生成的MR(或CT)图像进行配对并同时输入,先通过两个编码器(encoders)分别学习模态特有的特征,再经过一个跨模态的注意力模块将不同模态的特征进行融合,最后输入一个公共的解码器(decoder)来得到模态共享的特征,用于心脏图像分割. 上述学习过程是端到端的方式进行训练. 本文将所提方法在真实的CT与MR不配对的心脏图像数据集上进行实验评估,表明所提方法的分割精度超出基准方法

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133