全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

谐振泵浦2640 nm Ho:YAG/SrWO4中红外拉曼激光器理论研究
Theoretical Study of Resonantly Pumped Mid-Infrared Ho:YAG/SrWO4 Intracavity Raman Laserat 2640 nm

DOI: 10.12677/APP.2020.1012067, PP. 519-527

Keywords: 能量传递过程,准二能级速率方程,数值模拟
Energy Transferprocess
, Quasi-Two-Level Rate Equation, Numerical Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据谐振泵浦Ho:YAG激光器的能量传递过程,构建了Ho:YAG/SrWO4主动调Q拉曼激光器的准二能级速率方程模型。数值模拟得到了晶体内反转粒子数密度、腔内基频光子数密度和拉曼光子数密度随时间的变化关系,并利用该模型分析了Q开关重复频率和输出镜透过率大小等因素对激光器输出的平均输出功率、脉冲宽度、单脉冲能量和峰值功率的影响。为后续实验获得稳定高效的2640 nm拉曼激光输出奠定了理论基础。
The theoretical model of quasi-two-level Ho:YAG/SrWO4 actively Q-switched Raman laser is established according to the energy transfer process of Hoion in a resonantly pumped Ho:YAG laser. The relationship between the inverted particle density in the laser crystal, the density of the funda-mental photon and the Raman photon with time is obtained by numerical simulation. The influences of Q-switch frequency and output mirror transmittance on the average output power, pulse width, pulse energy, and peak power of the Raman laser are also analyzed, which provides a theoretical basis for achieving stable and high efficient Raman laser output at 2640 nm in future experiment investigation.

References

[1]  Yao, B.Q., Shen, Y.J., Duan, X.M., Dai, T.Y., Ju, Y.L. and Wang, Y.Z. (2014) A 41-W ZnGeP2 Optical Parametric Os-cillator Pumped by a Q-Switched Ho:YAG Laser. Optics Letters, 39, 6589-6592.
https://doi.org/10.1364/OL.39.006589
[2]  Yuan, J.H., Duan, X.M., Yao, B.Q., Li, J., Cui, Z., Shen, Y.J., Dai, T.Y., Ju, Y.L., Li, Y.C., Kou, H.M. and Pan, Y.B. (2015) Dual-End-Pumped High-Power Cr2+:ZnS Passively Q-Switched Ho:YAG Ceramic Laser. Applied Physics B, 119, 381-385.
https://doi.org/10.1007/s00340-015-6086-0
[3]  Chen, H., Shen, D.Y., Zhang, J., Yang, H., Tang, D.Y., Zhao, T. and Yang, X.F. (2011) In-Band Pumped Highly Efficient Ho:YAG Ceramic Laser with 21 W Output Power at 2097 nm. Optics Letters, 36, 1575-1577.
https://doi.org/10.1364/OL.36.001575
[4]  Duan, X.M., Shen, Y.J., Yao, B.Q. and Wang, Y.Z. (2018) A 106W Q-Switched Ho:YAG Laser with Single Crystal. Optik, 169, 224-227.
https://doi.org/10.1016/j.ijleo.2018.05.094
[5]  Brenier, A., Jia, G.H. and Tu, C.Y. (2004) Raman Lasers at 1.171 and 1.517 μm with Self-Frequency Conversion in SrWO4:Nd3+ Crystal. Journal of Physics Condensed Matter, 16, 9103-9108.
https://doi.org/10.1088/0953-8984/16/49/025
[6]  Fan, Y.X., Liu, Y., Duan, Y.H., Wang, Q., Fan, L., Wang, H.T., Jia, G.H. and Tu, C.Y. (2008) High-Efficiency Eye-Safe Intracavity Raman Laser at 1531 nm with SrWO4 Crystal. Ap-plied Physics B, 93, 327-330.
https://doi.org/10.1007/s00340-008-3165-5
[7]  Errandonea, D., Tu, C., Jia, G., Martín, I.R., Rodríguez-Mendoza, U.R., Lahoz, F., Torres, M.E. and Lavín, V. (2008) Effect of Pressure on the Luminescence Properties of Nd3+ Doped SrWO4 Laser Crystal. Journal of Alloys & Compounds, 451, 212-214.
https://doi.org/10.1016/j.jallcom.2007.04.180
[8]  王古常, 孙斌, 万强, 程勇. 军用脉冲激光测距技术与研究现状[J]. 光学与光电技术, 2003(4): 55-59.
[9]  Mcdaniel, S.A., Berry, P.A., Cook, G., Zelmon, D., Meissner, S., Meissner, H. and Mu, X.D. (2017) CW and Passively Q-Switched Operation of a Ho:YAG Waveguide Laser. Optics & Laser Technology, 91, 1-6.
https://doi.org/10.1016/j.optlastec.2016.12.004
[10]  Zhang, X.L., Ni, K.B., Huang, J., Dong, G.Z. and Li, G.X. (2020) Resonantly Pumped Mid-Infrared Ho:YAG/BaWO4 Intracavity Raman Laserat 2640 nm. Optics and Laser Technology, 121, Article ID: 105813.
https://doi.org/10.1016/j.optlastec.2019.105813
[11]  丁双红. 全固态拉曼激光器理论与实验研究[D]: [博士学位论文]. 济南: 山东大学, 2006.
[12]  陈晓寒. 1.18微米全固态拉曼激光器的高效运转及人眼安全拉曼激光器[D]: [博士学位论文]. 济南: 山东大学, 2009.
[13]  朱国利. 高重频Ho:YAG激光器及其泵浦源Tm:YLF激光器的研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012.
[14]  段小明. 常温氧化物基质单掺Ho固体激光器的研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012.
[15]  Zhang, X.L., Ding, Y., Qiao, Y., Li, G.X. and Cui, J.H. (2015) Diode-End-Pumped Efficient 2533 nm Intracavity Raman Laser with High Peak Power. Optics Communica-tions, 355, 433-437.
https://doi.org/10.1016/j.optcom.2015.07.008
[16]  Kuzucu, O. (2015) Watt-Level, Mid-Infrared Output from a BaWO4 External-Cavity Raman Laser at 2.6 μm. Optics Letters, 40, 5078-5081.
https://doi.org/10.1364/OL.40.005078
[17]  骆勇. Ho:YAG/YVO4拉曼激光器输出特性研究[D]: [硕士论文]. 哈尔滨: 哈尔滨工程大学, 2018.
[18]  Degnan, J.J. (1989) Theory of the Optimally Coupled Q-Switched Laser. IEEE Journal of Quantum Electronics, 25, 214-220.
https://doi.org/10.1109/3.16265
[19]  W?克希耐尔. 固体激光工程[M]. 孙文, 等, 译. 北京: 科学出版社, 2002: 89.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133