In this paper, research has been conducted to increase the quantity of fiber produced in the enterprise by creating a sorting device for spun seeds, dividing them into fractions by geometric dimensions, and by re-ginning, separating those with long fibers. A new model was developed for geometric sorting of cotton seeds in the harvest, and experiments determined its effectiveness and the optimal values of the factors affecting the efficiency using mathematical modeling. Based on the results of the study, graphs of the influence of factors on device performance and on device efficiency were constructed.
References
[1]
Obidov, A., Sultonov, M., Muhksinov, I. and Abdullaev, S. (2018) The Theoretical Studies of the Cultivation of Three Cotton Seeds along the Plain. Engineering, 10, 514-520. https://doi.org/10.4236/eng.2018.108037
[2]
Obidov, A., Akhmedhodjaev, K., Sarimsakov, O. and Holikov, Q. (2018) Investigation of the Properties of Fibrous Cotton Seeds, for Sorting on a Mesh Surface. Engineering, 10, 572-578. https://doi.org/10.4236/eng.2018.109041
[3]
Obidov, A., Mamatqulov, O. and Sultonov, M. (2018) Theoretical Analysis of the Movement of Cotton Piece on the Slope Surface. International Conference of Science and Practice: A New Level of Integration in the Modern World, Berlin, 2018, 151-156.
[4]
Azamatovich, O.A., Juraboyevich, M.K.S., Mirzarahmatovich, M. and Utkirbe, B. (2019) Research Caacity of the Fiber of Long Fiber Separating Drums from Waste Fibers Composition. International Journal of Innovative Studies in Sciences and Engineering Technology, 5, 28-31.
[5]
Obidov, A. and Sultonov, M. (2020) Investigation of Working Bodies of the Device for Separation of Fibers Suitable for Spinning from Cotton Waste. Engineering, 12, 893-905.
[6]
Azizov, S.M. and Axmedhodjaev, K.T. (2016) The Optimal Modeling of an Angular
Position of Saw Cylinders in Single-Chamber Two Cylinders Gin. American Journal
of Mechanical and Industrial Engineering, 1, 103-106.
[7]
Bauman, V.A. (1977) Equipment for the Production of Building Materials and Products. 2nd Edition.
Kamalov, N.Z. and Makhmatkulov, C.M. (1991) Methods for Optimizing Separation Processes. Published UzNIINTI, Tashkent, 28.
[10]
Obidov, A.A. and Sultanov M.M. (2020) Investigation of Working Parts of Fixed Device Designed to Separate Spinning Fibers from Fibrous Waste that can be Spun. Journal of Critical Reviews, 7, 5614-5623.
[11]
Obidov, A.A. and Sultanov M.M. (2020) Study of Technological Parameters of Fiber Separation Device. International Journal of Psychosocial Rehabilitation, 24, 6400-6407.
https://doi.org/10.37200/IJPR/V24I5/PR2020624
[12]
Abdukarimovich, M.O., Ibragimovich, A.K. and Sharipjanovich, S.O. (2018) Designing a New Design of a Loading Cylinder for Pneumo-Mechanical Spinning Machines. Engineering, 10, 345-356. https://doi.org/10.4236/eng.2018.106025
[13]
Sarimsakov, O. and Gaybnazarov, E. (2016) About Energy Consumption in Pneumatic Conveying of Raw Cotton. American Journal of Energy and Power Engineering, 3, 26-29.
[14]
Sarimsakov, O., Tursunov,b I., Rajapova, N. and Mardonov B. (2020) The Study of the Movement of the Aero Mixture Through the Pipeline during Pneumatic Transportation. Journal of Advanced Research in Dynamical and Control Systems, 12, 1287-1297. https://doi.org/10.5373/JARDCS/V12SP4/20201605
[15]
Obidov А. (2007) Improvement of Technology of Cleaning and Sorting Processed Cotton Seeds. Ph.D. Dissertation, TITLI (Tashkent Institute of Textile and Light Industry), Tashkent.