This manuscript presents a new approach MPPT (Maximum Power Point Tracking) for improving and optimizing the performance of a Wind Energy Conversion System (WECS) operating for small variations in wind speed by combining sliding mode control and fuzzy logic control. The proposed method consists of optimizing the sliding mode controller by the fuzzy controller. The main purpose of the Sliding Mode control-Fuzzy Logic controller (SM-FL) is to ensure the robustness (by eliminating certain disadvantages of the sliding mode control such as the phenomenon of chattering) and the stability of the control system in the case of small variations in conditions atmospheric (here variation of the wind). Our system consists of a wind turbine, a Permanent Magnet Synchronous Generator (PMSG) and a DC-DC boost converter connected to a continuous load. The performances of the method suggested are compared with those of fuzzy logic and fuzzy-Proportional Integral (FL-PI) in term speed of convergence, of tracking time and tracking efficiency. The results of numerical simulation of our system confirmed the best performance of this method.
Quang Minh, H., Frédéric, N., Najib, E. and Abdelaziz, H. (2012) Fuzzy Control of Variable Speed Wind Turbine Using Permanent Magnet Synchronous Machine for Stand-Alone System. In: M’Sirdi, N., et al., Eds., Sustainability in Energy and Buildings, Springer, Berlin, 31-44. https://doi.org/10.1007/978-3-642-27509-8_3
[3]
Azizi, N. and CheshmehBeigi, H.M. (2017) Reactive and Active Power Control of Grid WECS Based on DFIG and Energy Storage System under Both Balanced and Unbalanced Grid Conditions. Journal of Renewable Energy and Environment, 4, 31-38.
[4]
Hemdani, A., Dagbagi, M., Naouar, W.M., Idkhajine, L., Belkhodja, I.S. and Monmasson, E. (2015) Indirect Sliding Mode Power Control for Three Phase Grid Connected Power Converter. IET Power Electronics, 8, 977-985. https://doi.org/10.1049/iet-pel.2013.0945
[5]
Nasiri, M., Mobayen, S. and Min Zhu, Q. (201) Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine. Complexity, 2019, Article ID: 6141607. https://doi.org/10.1155/2019/6141607
[6]
Spiazzi, G. and Mattavelli, P. (2002) Sliding-Mode Control of Switched-Mode Power Supplies. In: The Power Electronics Handbook, CRC Press, Boca Raton, Ch. 8. https://doi.org/10.1201/9781420037067.ch8
[7]
Zhu, Y., Cheng, M., Hua, W. and Wang, W. (2012) A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems. Energies, 5, 1398-1412. https://doi.org/10.3390/en5051398
[8]
Kazmi, S.M.R., Goto, H., Guo, H. and Ichinokura, O. (2010) Review and Critical Analysis of the Research Papers Published Till Date on Maximum Power Point Tracking in Wind Energy Conversion System. IEEE Energy Conversion Congress and Exposition, Atlanta, 12-16 September 2010, 4075-4082. https://doi.org/10.1109/ECCE.2010.5617747
[9]
Barakati, S.M., Kazerani, M. and Aplevich, J.D. (2009) Maximum Power Tracking Control for a Wind Turbine System Including a Matrix Converter. IEEE Transaction Energy Conversion, 24, 705-713. https://doi.org/10.1109/TEC.2008.2005316
[10]
Nateghi, A.R., Karegar, H.K. and Bagheri, S. (2014) Maximum Power Point Tracking of Permanent Magnet Wind Turbines Equipped with Direct Matrix Converter. Journal Renewable Sustainable Energy, 6, Article ID: 053123. https://doi.org/10.1063/1.4898365
[11]
Radjai, T., Rahmani, L., Mekhilef, S. and Gaubert, J.P. (2015) Implementation of a Modified Incremental Conductance MPPT Algorithm with Direct Control Based on a Fuzzy Duty Cycle Change Estimator Using dSPACE. Solar Energy, 110, 325-337. https://doi.org/10.1016/j.solener.2014.09.014
[12]
Ahmed, J. and Salam, Z. (2015) An Improved Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) Algorithm for Higher Efficiency. Applied Energy, 150, 97-108. https://doi.org/10.1016/j.apenergy.2015.04.006
[13]
Daili, Y., Gaubert, J.-P. and Rahmani, L. (2015) New Control Strategy for Fast-Efficient Maximum Power Point Tracking without Mechanical Sensors Applied to Small Wind Energy Conversion System. Journal Renewable Sustainable Energy, 7, Article ID: 043102. https://doi.org/10.1063/1.4923394
[14]
Chen, Y.T., Jhang, Y.C. and Liang, R.H. (2016) A Fuzzy-Logic Based Auto-Scaling Variable Step-Size MPPT Method for PV Systems. Solar Energy, 126, 53-63. https://doi.org/10.1016/j.solener.2016.01.007
[15]
Tiwari, R. and Babu, N.R. (2016) Fuzzy Logic Based MPPT for Permanent Magnet Synchronous Generator in Wind Energy Conversion System. IFAC-PapersOnLine, 49, 462-467. https://doi.org/10.1016/j.ifacol.2016.03.097
[16]
Ro, K. and Choi, H. (2005) Application of Neural Network Controller for Maximum Power Extraction of Agrid-Connected Wind Turbine System. Electrical Engineering, 88, 53-45. https://doi.org/10.1007/s00202-004-0254-2
[17]
Sabzevari, S., Karimpour, A., Monfared, M. and Sistani, M.B.N. (2017) MPPT Control of Wind Turbines by Direct Adaptive Fuzzy-PI Controller and Using ANNPSO Wind Speed Estimator. Journal Renewable Sustainable Energy, 9, Article ID: 013302. https://doi.org/10.1063/1.4973447
[18]
Chiou, J.S. and Liu, M.T. (2009) Numerical Simulation for Fuzzy-PID Controllers and Helping EP Reproduction with PSO Hybrid Algorithm. Simulation Modelling Practice and Theory, 17, 1555-1565. https://doi.org/10.1016/j.simpat.2009.05.006
[19]
Bouarroudj, N., Boukhetala, D. and Boudjema, F. (2014) Tuning Fuzzy PDα Sliding Mode Controller Using PSO Algorithm for Trajectory Tracking of a Chaotic System. Journal of Electrical Engineering, 14, 378-385.
[20]
Bouarroudj, N., Boukhetala, D. and Boudjema, F. (2015) A Hybrid Fuzzy Fractional Order PID Sliding-Mode Controller Design Using PSO Algorithm for Interconnected Nonlinear Systems. Journal of Control Engineering and Applied Informatics, 17, 41-51.
[21]
Kermadi, M. and Berkouk, E.M. (2017) Artificial Intelligence-Based Maximum Power Point Tracking Controllers for Photovoltaic Systems: Comparative Study. Renewable and Sustainable Energy Reviews, 69, 369-386. https://doi.org/10.1016/j.rser.2016.11.125
[22]
Garraoui, R., Aroudi, A., Ben Hamed, M., Sbita, L. and Al-Hosani, K. (2016) A Comparative Study between Two MPPT Controllers Based on the Principe of Sliding-Mode Control Theory and Intelligent Control Technique in Photovoltaic Systems. In: Proceedings of the Mediterranean Conference on Information & Communication Technologies 2015, Lecture Notes in Electrical Engineering, Vol. 380, Springer, Cham, 505-515. https://doi.org/10.1007/978-3-319-30301-7_53
[23]
Yatimi, H. and Aroudam, E. (2016) Assessment and Control of a Photovoltaic Energy Storage System Based on the Robust Sliding Mode MPPT Controller. Solar Energy, 139, 557-568. https://doi.org/10.1007/978-3-319-30301-7_53
[24]
Rashed, M., Goh, K.B., Dunnigan, M.W., MacConnell, P.F.A., Stronach, A.F. and Williams, B.W. (2005) Sensorless Second-Order Sliding-Mode Speed Control of a Voltage-Fed Induction-Motor Drive Using Nonlinear State Feedback. IEE Proceedings Electric Power Applications, 152, 1127-1136. https://doi.org/10.1049/ip-epa:20050042