|
基于1D卷积与特征融合的深度学习轴承诊断算法研究
|
Abstract:
[1] | 李辉, 郑海起, 杨绍普. 基于EMD和Teager能量算子的轴承故障诊断研究[J]. 振动与冲击, 2008(10): 22-24+29+195. |
[2] | 田晶, 李有儒, 艾延廷. 一种基于Deep-GBM的航空发动机中介轴承故障诊断方法[J]. 航空动力学报, 2019, 34(4): 756-763. |
[3] | 张文颢, 李永健, 张卫华. 基于K-奇异值分解和层次化分块正交匹配算法的滚动轴承故障诊断[J]. 中国机械工程, 2019, 30(4): 406-412. |
[4] | 刘文朋, 廖英英, 杨绍普, 刘永强, 顾晓辉. 一种基于多点峭度谱和最大相关峭度解卷积的滚动轴承故障诊断方法[J]. 振动与冲击, 2019, 38(2): 151-156+168. |
[5] | 欧璐, 于德介. 路图傅里叶变换及其在滚动轴承故障诊断中的应用[J]. 机械工程学报, 2015, 51(23): 76-83. |
[6] | He, C., Wu, T., Liu, C.C. and Chen, T. (2020) A Novel Method of Composite Multiscale Weighted Permutation Entropy and Machine Learning for Fault Complex System Fault Diagnosis. Measurement, 158, Article ID: 107748.
https://doi.org/10.1016/j.measurement.2020.107748 |
[7] | Mohamad, T.H., Nazari, F. and Nataraj, C. (2020) A Re-view of Phase Space Topology Methods for Vibration-Based Fault Diagnostics in Nonlinear Systems. Journal of Vibra-tion Engineering & Technologies, 8, 393-401.
https://doi.org/10.1007/s42417-019-00157-6 |
[8] | Liu, C.Y. and Gryllias, K. (2020) A Semi-Supervised Support Vector Data Description-Based Fault Detection Method for Rolling Element Bearings Based on Cyclic Spectral Analysis. Mechanical Systems and Signal Processing, 140, Article ID: 106682. https://doi.org/10.1016/j.ymssp.2020.106682 |
[9] | Wang, G., Zhang, F., Cheng, B.Y. and Fang, F. (2020) DAMER: A Novel Diagnosis Aggregation Method with Evidential Reasoning Rule for Bearing Fault Diagnosis. Journal of Intelligent Manufacturing. |
[10] | 杜小磊, 陈志刚, 张楠, 等. 基于同步挤压S变换和深度学习的轴承故障诊断[J]. 组合机床与自动化加工技术, 2019, 543(5): 95-98+102. |
[11] | 庄雨璇, 李奇, 杨冰如, 等. 基于LSTM的轴承故障诊断端到端方法[J]. 噪声与振动控制, 2019, 39(6): 187-193. |
[12] | 吴小龙, 雷文平, 陈宏, 等. 具有多核结构的稀疏化DNN在轴承诊断中的应用[J]. 机械设计与制造, 2020(2): 248-251, 255. |
[13] | 涂小卫, 张士强, 王明. 基于深度置信网络的牵引电机轴承故障诊断方法[J]. 城市轨道交通研究, 2020, 23(1): 174-178, 195. |
[14] | 杜小磊, 陈志刚, 许旭, 等. 改进深层小波自编码器的轴承故障诊断方法[J]. 计算机工程与应用, 2020, 56(5): 263-269. |
[15] | Shang, Z.W., Liu, X., Li, W.X., et al. (2020) A Rolling Bearing Fault Diagnosis Method Based on Fast DTW and an AGBDBN. Insight, 62, 457-463. https://doi.org/10.1784/insi.2020.62.8.457 |
[16] | Li, X., Zhang, W., Xu, N.X., et al. (2020) Deep Learning-Based Machinery Fault Diagnostics with Domain Adaptation across Sensors at Different Places. IEEE Transactions on Industrial Electronics, 67, 6785-6794.
https://doi.org/10.1109/TIE.2019.2935987 |
[17] | Chen, X.H., Zhang, B.K. and Gao, D. (2020) Bearing Fault Diag-nosis Base on Multi-Scale CNN and LSTM Model. Journal of Intelligent Manufacturing. |
[18] | Wang, Y., Ning, D.J. and Feng, S.L. (2020) A Novel Capsule Network Based on Wide Convolution and Multi-Scale Convolution for Fault Diagnosis. Applied Sciences—Basel, 10, 16. https://doi.org/10.3390/app10103659 |
[19] | Xue, Y., Dou, D.Y. and Yang, J.G. (2020) Multi-Fault Diagnosis of Rotating Machinery Based on Deep Convolution Neural Network and Sup-port Vector Machine. Measurement, 156, 7.
https://doi.org/10.1016/j.measurement.2020.107571 |
[20] | Guo, C.Z., Li, L., Hu, Y.Y., et al. (2020) A Deep Learn-ing Based Fault Diagnosis Method with Hyperparameter Optimization by Using Parallel Computing. IEEE Access, 8, 131248-131256.
https://doi.org/10.1109/ACCESS.2020.3009644 |