|
Finance 2020
可信性测度下基于均值–方差–VaR–偏度–正弦熵的模糊投资组合分析
|
Abstract:
本文在可信性理论的基础上,将资产收益率视为模糊变量,建立了均值–方差–VaR–偏度–正弦熵的多目标模糊投资组合模型,利用遗传算法求解最优投资策略。研究表明:模糊VaR的引入及新模型的构建,有助于更好地刻画资产收益率的风险特征,从而发现更优的投资组合策略。
In this paper, a new fuzzy multi-objective mean-variance-VaR-skewness-sine entropy portfolio model is proposed by assuming the rate of return on the risky asset is a fuzzy variable, based on the credibility theory. In order to solve the proposed model, we design a genetic algorithm. Then, nu-merical examples show that the extension of the model and the introduction of fuzzy VaR are help-ful to characterize the risk characteristics of asset returns and make a contribution to the invest-ment portfolio strategies.
[1] | Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x |
[2] | Zadeh, L.A. (1965) Information and Control. Fuzzy Sets, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[3] | Tanaka, H., Guo, P. and Türksen, I.B. (2000) Portfolio Selection Based on Fuzzy Probabilities and Possibility Distributions. Fuzzy Set and Systems, 111, 387-397. https://doi.org/10.1016/S0165-0114(98)00041-4 |
[4] | Carlsson, C. and Fuller, R. (2001) On Possibilistic Mean Value and Variance of Fuzzy Numbers. Fuzzy Sets and Systems, 122, 315-326. https://doi.org/10.1016/S0165-0114(00)00043-9 |
[5] | Zhang, W.G. and Nie, Z.K. (2003) On Possibilistic Variance of Fuzzy Numbers. Lecture Notes in Artificial Intelligence Vol. 2639, International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, Chongqing, 26-29 May 2003, 398-402. https://doi.org/10.1007/3-540-39205-X_66 |
[6] | Zhang, W.G. and Nie, Z.K. (2004) On Admissible Efficient Port-folio Selection Problem. Applied Mathematics and Computation, 159, 357-371. https://doi.org/10.1016/j.amc.2003.10.019 |
[7] | Wang, S. and Zhu, S. (2002) On Fuzzy Portfolio Selection Prob-lems. Fuzzy Optimization & Decision Making, 1, 361-377. https://doi.org/10.1023/A:1020907229361 |
[8] | Zhang, W., Wang, Y. and Chen, Z. (2007) Possibilistic Mean-Variance Models and Efficient Frontiers for Portfolio Selection Problem. Information Sciences, 177, 2787-2801. https://doi.org/10.1016/j.ins.2007.01.030 |
[9] | Tsaur, R.C. (2013) Fuzzy Portfolio Model with Different Investor Risk Attitudes. European Journal of Operational Research, 227, 385-390. https://doi.org/10.1016/j.ejor.2012.10.036 |
[10] | Zhang, X., Zhang, W. and Xiao, W. (2013) Multi-Period Portfolio Optimization under Possibility Measures. Economic Modelling, 35, 401-408. https://doi.org/10.1016/j.econmod.2013.07.023 |
[11] | Liu, B. and Liu, Y.K. (2002) Expected Value of Fuzzy Varia-ble and Fuzzy Expected Value Models. IEEE Transactions on Fuzzy Systems, 10, 445-450. https://doi.org/10.1109/TFUZZ.2002.800692 |
[12] | Huang, X. (2008) Mean-Semivariance Models for Fuzzy Port-folio Selection. Journal of Computational and Applied Mathematics, 217, 1-8. https://doi.org/10.1016/j.cam.2007.06.009 |
[13] | Huang, X. (2008) Mean-Entropy Models for Fuzzy Portfolio Se-lection. IEEE Transactions on Fuzzy Systems, 16, 1096-1101. https://doi.org/10.1109/TFUZZ.2008.924200 |
[14] | 王灿杰, 邓雪. 基于可信性理论的均值–熵–偏度投资组合模型及其算法求解[J]. 运筹与管理, 2019, 28(2): 154-159. |
[15] | 蔡小龙, 周荣喜, 郑庆华. 基于可信性均值–方差–偏度–正弦熵的投资组合模型[J]. 北京化工大学学报(自然科学版), 2017, 44(2): 119-123. |
[16] | Wang, B., Watada, J. and Pedrycz, W. (2009) Value-at-Risk-Based Two-Stage Fuzzy Facility Location Problems. IEEE Transactions on Industrial Informatics, 5, 465-482. https://doi.org/10.1109/TII.2009.2022542 |
[17] | Wang, B., Wang, S. and Watada, J. (2011) Fuzzy Portfolio Selec-tion Models With Value-at-Risk. IEEE Transactions on Fuzzy Systems, 19, 758-769. https://doi.org/10.1109/TFUZZ.2011.2144599 |
[18] | Wang, B. and Watada, J. (2013) Multiobjective Particle Swarm Optimization for a Novel Fuzzy Portfolio Selection Problem. IEEE Transactions on Electrical and Electronic Engineer-ing, 9, 146-154. https://doi.org/10.1002/tee.21834 |
[19] | Kar, M.B., Kar, S., Guo, S., Li, X. and Majumder, S. (2019) A New Bi-Objective Fuzzy Portfolio Selection Model and Its Solution Through Evolutionary Algorithms. Soft Compu-ting, 23, 4367-4381.
https://doi.org/10.1007/s00500-018-3094-0 |
[20] | 金秀, 曲晓洁, 刘家和. 考虑投资者心理的模糊多目标投资组合模型及交互式算法[J]. 系统管理学报, 2017, 26(6): 1081-1088. |