全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2020 

可信性测度下基于均值–方差–VaR–偏度–正弦熵的模糊投资组合分析
Fuzzy Portfolio Analysis Based on Mean-Variance-VaR-Skewness-Sine Entropy under Credibility Measure

DOI: 10.12677/FIN.2020.106058, PP. 560-567

Keywords: 可信性测度,模糊VaR,模糊投资组合模型,模糊夏普比率
Credibility Measure
, Fuzzy VaR, Fuzzy Portfolio Model, Fuzzy Sharpe Ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在可信性理论的基础上,将资产收益率视为模糊变量,建立了均值–方差–VaR–偏度–正弦熵的多目标模糊投资组合模型,利用遗传算法求解最优投资策略。研究表明:模糊VaR的引入及新模型的构建,有助于更好地刻画资产收益率的风险特征,从而发现更优的投资组合策略。
In this paper, a new fuzzy multi-objective mean-variance-VaR-skewness-sine entropy portfolio model is proposed by assuming the rate of return on the risky asset is a fuzzy variable, based on the credibility theory. In order to solve the proposed model, we design a genetic algorithm. Then, nu-merical examples show that the extension of the model and the introduction of fuzzy VaR are help-ful to characterize the risk characteristics of asset returns and make a contribution to the invest-ment portfolio strategies.

References

[1]  Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
[2]  Zadeh, L.A. (1965) Information and Control. Fuzzy Sets, 8, 338-353.
https://doi.org/10.1016/S0019-9958(65)90241-X
[3]  Tanaka, H., Guo, P. and Türksen, I.B. (2000) Portfolio Selection Based on Fuzzy Probabilities and Possibility Distributions. Fuzzy Set and Systems, 111, 387-397.
https://doi.org/10.1016/S0165-0114(98)00041-4
[4]  Carlsson, C. and Fuller, R. (2001) On Possibilistic Mean Value and Variance of Fuzzy Numbers. Fuzzy Sets and Systems, 122, 315-326.
https://doi.org/10.1016/S0165-0114(00)00043-9
[5]  Zhang, W.G. and Nie, Z.K. (2003) On Possibilistic Variance of Fuzzy Numbers. Lecture Notes in Artificial Intelligence Vol. 2639, International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, Chongqing, 26-29 May 2003, 398-402.
https://doi.org/10.1007/3-540-39205-X_66
[6]  Zhang, W.G. and Nie, Z.K. (2004) On Admissible Efficient Port-folio Selection Problem. Applied Mathematics and Computation, 159, 357-371.
https://doi.org/10.1016/j.amc.2003.10.019
[7]  Wang, S. and Zhu, S. (2002) On Fuzzy Portfolio Selection Prob-lems. Fuzzy Optimization & Decision Making, 1, 361-377.
https://doi.org/10.1023/A:1020907229361
[8]  Zhang, W., Wang, Y. and Chen, Z. (2007) Possibilistic Mean-Variance Models and Efficient Frontiers for Portfolio Selection Problem. Information Sciences, 177, 2787-2801.
https://doi.org/10.1016/j.ins.2007.01.030
[9]  Tsaur, R.C. (2013) Fuzzy Portfolio Model with Different Investor Risk Attitudes. European Journal of Operational Research, 227, 385-390.
https://doi.org/10.1016/j.ejor.2012.10.036
[10]  Zhang, X., Zhang, W. and Xiao, W. (2013) Multi-Period Portfolio Optimization under Possibility Measures. Economic Modelling, 35, 401-408.
https://doi.org/10.1016/j.econmod.2013.07.023
[11]  Liu, B. and Liu, Y.K. (2002) Expected Value of Fuzzy Varia-ble and Fuzzy Expected Value Models. IEEE Transactions on Fuzzy Systems, 10, 445-450.
https://doi.org/10.1109/TFUZZ.2002.800692
[12]  Huang, X. (2008) Mean-Semivariance Models for Fuzzy Port-folio Selection. Journal of Computational and Applied Mathematics, 217, 1-8.
https://doi.org/10.1016/j.cam.2007.06.009
[13]  Huang, X. (2008) Mean-Entropy Models for Fuzzy Portfolio Se-lection. IEEE Transactions on Fuzzy Systems, 16, 1096-1101.
https://doi.org/10.1109/TFUZZ.2008.924200
[14]  王灿杰, 邓雪. 基于可信性理论的均值–熵–偏度投资组合模型及其算法求解[J]. 运筹与管理, 2019, 28(2): 154-159.
[15]  蔡小龙, 周荣喜, 郑庆华. 基于可信性均值–方差–偏度–正弦熵的投资组合模型[J]. 北京化工大学学报(自然科学版), 2017, 44(2): 119-123.
[16]  Wang, B., Watada, J. and Pedrycz, W. (2009) Value-at-Risk-Based Two-Stage Fuzzy Facility Location Problems. IEEE Transactions on Industrial Informatics, 5, 465-482.
https://doi.org/10.1109/TII.2009.2022542
[17]  Wang, B., Wang, S. and Watada, J. (2011) Fuzzy Portfolio Selec-tion Models With Value-at-Risk. IEEE Transactions on Fuzzy Systems, 19, 758-769.
https://doi.org/10.1109/TFUZZ.2011.2144599
[18]  Wang, B. and Watada, J. (2013) Multiobjective Particle Swarm Optimization for a Novel Fuzzy Portfolio Selection Problem. IEEE Transactions on Electrical and Electronic Engineer-ing, 9, 146-154.
https://doi.org/10.1002/tee.21834
[19]  Kar, M.B., Kar, S., Guo, S., Li, X. and Majumder, S. (2019) A New Bi-Objective Fuzzy Portfolio Selection Model and Its Solution Through Evolutionary Algorithms. Soft Compu-ting, 23, 4367-4381.
https://doi.org/10.1007/s00500-018-3094-0
[20]  金秀, 曲晓洁, 刘家和. 考虑投资者心理的模糊多目标投资组合模型及交互式算法[J]. 系统管理学报, 2017, 26(6): 1081-1088.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133