|
北极地区典型下垫面碳收支特征分析
|
Abstract:
北极不同地区的气候和植被类型的差异导致不同类型生态系统的碳收支差异。北极独特的生态系统以及对气候变化的响应的“放大效应”使北极地区对全球气候变化最为敏感。北极地区的碳循环对于全球气候变化反馈越来越重要。为了研究北极地区不同生态系统的碳循环过程,本文使用北极地区附近两组配对试验站的相关站点观测资料、FLUXNET网站上的部分资料。通以涡度相关方法为主要技术方法,探讨了2003年芬兰Hyytiala,Jokioinen和2010年格陵兰Zackenberg地区的净生态系统碳交换NEE的月动态,季节动态和年动态以及环境因素的影响机制。植被是影响生态系统碳收支的重要因子,生态系统通量和陆地上生物量具有显著的正相关关系。
Differences in climate and vegetation types in different parts of the Arctic lead to differences in carbon budgets of different types of ecosystems. The Arctic’s unique ecosystem and the “amplifica-tion effect” of its response to climate change make the Arctic most sensitive to global climate change. The carbon cycle in the Arctic is increasingly important for global climate change feedback. In order to study the carbon cycle processes of different ecosystems in the Arctic region, this paper uses ob-servations from relevant sites of two pairs of test stations near the Arctic region and some data on the FLUXNET website. Using the vorticity-related method as the main technical method, the month-ly, seasonal and annual dynamics of net ecosystem carbon exchange NEE in hyytiala and Jokioinen of Finland in 2003 and Zackenberg in Greenland in 2010 were discussed, and environmental factors were discussed. Vegetation is an important factor that affects the carbon budget of ecosystems, and ecosystem flux has a significant positive correlation with terrestrial biomass.
[1] | 陈立奇, 高众勇, 杨绪林, 詹力杨. 北极地区碳循环研究意义和展望[J]. 极地研究, 2004(3): 171-180. |
[2] | Grosse, G., Harden, J., Turetsky, M., Mcguire, A.D., Camill, P., Tarnocai, C., Frolking, S., Schuur, E.A.G., Jorgenson, T., Marchenko, S., Romanovsky, V., Wickland, K.P., French, N., Waldrop, M., Bourgeau-Chavez, L. and Striegl, R.G. (2011) Vulnerability of High-Latitude Soil Organic Carbon in North America to Disturbance. Journal of Geophysical Research, 116, G00K06. https://doi.org/10.1029/2010JG001507 |
[3] | Schaefer, K., Liu, L., Parsekian, A., Jafarov, E., Chen, A., Zhang, T., Gusmeroli, A., Panda, S., Zebker, H. and Schaefer, T. (2015) Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar. Remote Sensing, 7, 3735-3759. https://doi.org/10.3390/rs70403735 |
[4] | Harden, W.J., Koven, D.C., Ping, C.-L., Hugelius, G., Mcguire, D.A., Camill, P., Jorgenson, T., Kuhry, P., Michaelson, J.G., O’donnell, A.J., Schuur, G.A.E., Tarnocai, C., Johnson, K. and Grosse, G. (2012) Field Information Links Permafrost Carbon to Physical Vulnerabilities of Thawing. Geophysical Research Letters, 39, L15704.
https://doi.org/10.1029/2012GL051958 |
[5] | Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G. and Zimov, S. (2009) Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Global Biogeochemical Cycles, 23, GB2023.
https://doi.org/10.1029/2008GB003327 |
[6] | Ping, C.L., Jastrow, J.D., Jorgenson, M.T., Michaelson, G.J. and Shur, Y.L. (2015) Permafrost Soils and Carbon Cycling. Soil, 1, 147-171. https://doi.org/10.5194/soil-1-147-2015 |
[7] | Carey, J.C., Tang, J.W., Templer, P.H., Kroeger, K.D., Crowther, T.W., et al. (2016) Temperature Response of Soil Respiration Largely Unaltered with Experimental Warming. Proceedings of the National Academy of Sciences of the United States of America, 113, 13797-13802. https://doi.org/10.1073/pnas.1605365113 |
[8] | Schuur, E.A.G., McGuire, A.D., Sch?del, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., et al. (2015) Climate Change and the Permafrost Carbon Feedback. Nature, 520, 171-179. https://doi.org/10.1038/nature14338 |
[9] | Ping, C.-L., Michaelson, G.J., Jorgenson, M.T., Kimble, J.M., Epstein, H., Romanovsky, V.E. and Walker, D.A. (2008) High Stocks of Soil Organic Carbon in the North American Arctic Region. Nature Geoscience, 1, 615-619.
https://doi.org/10.1038/ngeo284 |
[10] | Mastepanov, M., Sigsgaard, C., Tagesson, T., Str?m, L., Tamstorf, M.P., Lund, M. and Christensen, T.R. (2013) Revisiting Factors Controlling Methane Emissions from High-Arctic Tundra. Biogeosciences, 10, 5139-5158.
https://doi.org/10.5194/bg-10-5139-2013 |
[11] | 药静宇, 王国印, 李晨蕊, 于海鹏. 不同区域典型植被类型的净生态系统碳交换特征[J]. 兰州大学学报(自然科学版), 2017, 53(5): 622-627. |
[12] | 许仲林. 祁连山青海云杉林地上生物量潜在碳储量估算[D]: [博士学位论文]. 兰州: 兰州大学, 2011. |
[13] | 何红艳. 青藏高原森林生产力格局及对气候变化响应的模拟[D]: [硕士学位论文]. 北京: 中国林业科学研究院, 2008. |
[14] | 郭舒艳. CLM4.5模型生态系统呼吸模拟研究[D]: [硕士学位论文]. 兰州: 甘肃农业大学, 2019. |
[15] | 耿绍波, 鲁绍伟, 饶良懿, 杨晓菲, 高东, 冯宗红. 基于涡度相关技术测算地表碳通量研究进展[J]. 世界林业研究, 2010, 23(3): 24-28. |