全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermo-Economic Optimization of Solar Thermal Devices by Coherent Integration of Technologies

DOI: 10.4236/epe.2020.1211040, PP. 671-707

Keywords: Thermal Systems, Thermoeconomics, Optimization, Concentrated Solar Power, Azimuth Rotatory Solar Concentrator, New CSP Fresnel Concept, Prototype

Full-Text   Cite this paper   Add to My Lib

Abstract:

Radiation is a form of energy where the angular variable of the direction of its photons has a primary importance, particularly for radiation concentration processes, which are essential tools to reach high temperatures from radiation beams (as the solar ones) with moderate intensities. Solar radiation cannot be used directly to feed thermodynamic cycles, and optical concentration must be applied to that goal. In general, reflection from mirrors is preferred to refraction by lenses in this case, because they have less optical aberrations. Concentration conveys very high temperatures in the receiver. However, the higher the temperature, the lower the efficiency of the solar thermal apparatus. Besides that, economy also suffers quite a lot when going to very high concentration factors, which is one of the main burdens in the development of Solar Thermal Energy. A new configuration of solar radiation concentrator is presented. It includes a salient innovation in the way the mirrors are given the right curvature by mechanical forces. Those mirrors are originally flat and do not need any special thermal treatment for this purpose. The whole device concept has been guided by the principle of thermoeconomic coherence, which requires similar efforts in all degrees of freedom that have strong influence in the performance and cost of the system. The paper shows the decision tree that has oriented the project, following the principle of equilibrium in efforts, which leads to a design window of moderate values in the main variables. The prototype of this new configuration has already been built, and the first stage of research is considered to be finished, because the prototype has shown excellent conditions to include selected (fitting) technologies at a very low cost.

References

[1]  Monteith, J.L. (2013) In: Unsworth, M.H., Ed., Principles of Environmental Physics Plants, Animals, and the Atmosphere, 4th Edition, Academic Press, Oxford.
[2]  Muradov, N.Z. and Veziroğlu, T.N. (2008) “Green” Path from Fossil-Based to Hydrogen Economy: An Overview of Carbon-Neutral Technologies. International Journal of Hydrogen Energy, 33, 6804-6839.
https://doi.org/10.1016/j.ijhydene.2008.08.054
[3]  Chiras, D.D. (2017) Power from the Sun: A Practical Guide to Solar Electricity (Revised Second Edition). New Society Publishers, Gabriola Island.
[4]  Luque, A.L. and Viacheslav, A. (2007) Concentrator Photovoltaics. Springer, Berlin.
https://doi.org/10.1007/978-3-540-68798-6
[5]  Miyazaki, Y. (2015) Liouville’s Theorem and Heat Kernels. Expositiones Mathematicae, 33, 101-104.
https://doi.org/10.1016/j.exmath.2014.02.001
[6]  Stoecker, W.F. (1989) Design of Thermal Systems. 3th Edition, McGraw-Hill, New York.
[7]  Aseri, T.K., Sharma, C. and Kandpal, T.C. (2020) Estimating Capital Cost of Parabolic Trough Collector Based Concentrating Solar Power Plants for Financial Appraisal: Approaches and a Case Study for India. Renewable Energy, 156, 1117-1131.
https://doi.org/10.1016/j.renene.2020.04.138
[8]  Fundación de la Energía de la Comunidad, de Madrid and Madrid (Comunidad Autónoma) Consejería de Economía, y Hacienda (2012) Guía técnica de la energía solar termoeléctrica. Madrid Fundación de la Energía de la Comunidad de Madrid Consejería de Economía y Hacienda, Madrid.
[9]  Jaluria, Y. (2008) Design and Optimization of Thermal Systems. 2nd Edition, CRC Press, Boca Ratón.
[10]  Steihaug, T. (1983) The Conjugate Gradient Method and Trust Regions in Large Scale Optimization. SIAM Journal on Numerical Analysis, 20, 626-637.
https://doi.org/10.1137/0720042
[11]  Wang, Z. (2019) Design of Solar Thermal Power Plants. CIP: Academic Press, London.
https://doi.org/10.1016/B978-0-12-815613-1.00003-1
[12]  Tsatsaronis, G. (2007) Definitions and Nomenclature in Exergy Analysis and Exergoeconomics. Energy, 32, 249-253.
https://doi.org/10.1016/j.energy.2006.07.002
[13]  Bai, Y. and Bai, Q. (2010) Chapter 14 Heat Transfer and Thermal Insulation. Elsevier Inc., Amsterdam.
https://doi.org/10.1016/B978-1-85617-689-7.10014-7
[14]  Boukelia, T.E., Mecibah, M.S., Kumar, B.N. and Reddy, K.S. (2015) Investigation of Solar Parabolic Trough Power Plants with and without Integrated TES (Thermal Energy Storage) and FBS (Fuel Backup System) Using Thermic Oil and Solar Salt. Energy, 88, 292-303.
https://doi.org/10.1016/j.energy.2015.05.038
[15]  Rovira, A., Martínez-Val, J.M. and Valdés, M. (2016) Thermoeconomic Coherence: A Methodology for the Analysis and Optimisation of Thermal Systems. Entropy, 18, 250.
https://doi.org/10.3390/e18070250
[16]  Castells, X.E. (2012) In: e-Libro, C., Ed., El modelo energetico espanol. Ediciones Diaz de Santos, Madrid.
[17]  Kotas, T.J. (1985) The Exergy Method of Thermal Plant Analysis. Butterworths, London, Boston.
[18]  El-Sayed, Y. (2003) The Thermoeconomics of Energy Conversions. Elsevier, Amsterdam.
[19]  International Renewable Energy Agency (IRENA) (2012) Concentrating Solar Power. International Renewable Energy Agency.
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/RE_Technologies_
Cost_Analysis-CSP.pdf
[20]  Muñoz, J., Martinez-Val, J. and Ramos, A. (2011) Thermal Regimes in Solar-Thermal Linear Collectors. Solar Energy, 85, 857-870.
https://doi.org/10.1016/j.solener.2011.02.004
[21]  Abbas Cámara, R., Muñoz Antón, J. and Martínez-Val Peñalosa, J.M. (2012) Steady-State Thermal Analysis of an Innovative Receiver for Linear Fresnel Reflectors. Applied Energy, 92, 503-515.
https://doi.org/10.1016/j.apenergy.2011.11.070
[22]  Muñoz-Antón, J., Martínez-Val, J.M., González-Portillo, L.F., Cano, J. and Millán, J.S. (2019) Experimental Facility for a New Thermal-Solar Field Configuration: The Rotatory Fresnel Collector or Sundial. AIP Conference Proceedings, 2126, Article ID: 060007.
https://doi.org/10.1063/1.5117593
[23]  Martinez-Val Penalosa, J.M., Munoz Anton, J., Abbas Camara, R., Piera Carrete, M., Rovira De Antonio, A.J. and Montes Pita, M.J. (2017) Dispositivo para combar placas planas y procedimiento de uso.
[24]  Martinez-Val Penalosa, J.M., Munoz Anton, J., Abbas Camara, R., Piera Carrete, M., Montes Pita, M.J. and Rovira De Antonio, A.J. (2015) Dispositivo rotatorio horizontal de concentración de la radiación solar.
[25]  Tecnogetafe (2020) Tecnogetafe.
https://www.tecnogetafe.es/en
[26]  Fundación Fomento Innovación Industrial (2020) Fundación para el fomento de la innovación industrial.
http://www.f2i2.net
[27]  García Garrido, S. (2011) Ingeniería de centrales termosolares CCP. Renovetec, Madrid.
http://santiagogarciagarrido.com/index.php/64-ingenieria-termosolar
[28]  Renovetec (12/04/16) Presupuesto de construcción de una central termosolar.
https://www.youtube.com/watch?v=N9BZDnppNM8
[29]  Abbas, R., Montes, M.J., Rovira, A. and Martínez-Val, J.M. (2016) Parabolic Trough Collector or Linear Fresnel Collector? A Comparison of Optical Features Including Thermal Quality Based on Commercial Solutions. Solar Energy, 124, 198-215.
https://doi.org/10.1016/j.solener.2015.11.039

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133