全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于主成分分析和粒子群优化神经网络 的粮食产量预测

Keywords: 粮食产量,预测模型,主成分分析(PCA),粒子群(PSO)算法,BP神经网络,影响因素,预测精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

粮食产量的预测研究在粮食安全方面具有重要意义,神经网络可以较好地反映粮食产量这一复杂的非线性动态系统。但是传统的BP神经网络预测模型存在学习收敛速度慢、易陷入局部极小值等缺陷,为了改善这一缺陷,提出了一种基于主成分分析(PCA)和粒子群(PSO)优化神经网络的预测模型。首先计算各影响因素与粮食产量之间的相关系数,利用主成分分析方法降低影响因子的维度,将降维后的因子作为神经网络的输入,然后采用BP神经网络建立粮食产量预测模型,其中引入PSO算法对BP神经网络的权值和阈值进行优化,最后使用训练过的BP神经网络预测粮食产量值。预测结果表明,该模型可有效提高预测精度,且收敛速度快,全局收敛性好,为粮食产量预测提供了一种新的途径

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133