|
Pure Mathematics 2020
quasi-h-Bernstein-Vandermonde矩阵的特征值的高精度计算
|
Abstract:
在本文中,我们首先提供了quasi-h-Bernstein-Vandermonde矩阵的重新参数化,并高精度计算出所有的参数。然后得出了计算此类矩阵的所有特征值的高精度算法。最后给出数值实验来验证所提出算法的高精度性。
In this paper, we first provide a re-parametrization of the class of quasi-h-Bernstein-Vandermonde matrix and the parameters are calculated with high relative accuracy. Then, we present new algo-rithms for computing all the eigenvalues of such matrix to high relative accuracy. Finally, numerical experiment is given to confirm the high relative accuracy of our algorithms.
[1] | Brenti, F. (1995) Combinatorics and Totally Positivity. Journal of Combinatorial Theory, 71, 175-218. https://doi.org/10.1016/0097-3165(95)90000-4 |
[2] | Pe?a, J.M. (1997) Shape Preserving Representations for Trigonometric Polynomial Curves. Computer Aided Geometric Design, 14, 5-11. https://doi.org/10.1016/S0167-8396(96)00017-9 |
[3] | Cortés, V. and Pe?a, J.M. (2008) A Stable Test for Strict Sign Regularity. Mathematics of Computation, 77, 2155-2171.
https://doi.org/10.1090/S0025-5718-08-02107-8 |
[4] | Huang, R. (2020) Accurate Eigenvalues of Some Generalized Sign Regular Matrices via Relatively Robust Representation. Journal of Scientific Computing, 82, 78. https://doi.org/10.1007/s10915-020-01182-4 |
[5] | Huang, R. (2013) A Test and Bidiagonal Factorization for Cer-tain Sign Regular Matrices. Linear Algebra and Its Applications, 438, 133-141. https://doi.org/10.1016/j.laa.2012.07.037 |
[6] | Marco, A., Martínez, J.J. and Via?a, R. (2019) Accurate Bidiagonal Decomposition of Totally Positive h-Bernstein- Vandermonde Matrices and Applications. Linear Algebra and Its Application, 579, 320-335. https://doi.org/10.1016/j.laa.2019.06.003 |