全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

循环血MicroRNA与辐射剂量相关性研究进展
Advances in Studies on the Correlation between Circulating Blood MicroRNA and Radiation Dose

DOI: 10.12677/ACM.2020.108250, PP. 1671-1677

Keywords: MicroRNA,核辐射,分子标志物
MicroRNA
, Nuclear Radiation, Molecular Markers

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着军队核武器、核电站、核医学等技术的发展,涉核人员对于核辐射安全有着更高的标准及需求,然而对于涉核人员辐射剂量评估,目前所使用的传统方法存在一定局限性。MicroRNA (miRNA)是一类内源基因编码的长度约为22个核苷酸的非编码单链RNA分子,它们在动植物中参与转录后基因表达调控。研究发现循环血miRNA具有很好的稳定性,并且参与多种生物过程,在核辐射早期照射后,循环血某些特定miRNA会发生特异性改变,且miRNA变化程度与辐射剂量存在相关性。大量研究报道miRNA与肿瘤发生、发展相关,而核辐射远期生物学效应包括使肿瘤发病率升高。可见miRNA是核辐射损伤早期评估及远期效应随访的潜在分子标准物,且应用实时定量PCR技术对循环血miRNA检查具有快速、准确、灵敏度高等优势,如果miRNA成为成熟辐射生物剂量计,可以更快速、准确地对辐射暴露风险进行评估,并可以进一步评估辐射剂量,对急性放射病进行明确分型分度,可有效指导临床治疗。本文对与核辐射损伤相关的microRNA进行归纳总结。
With the development of military nuclear weapons, nuclear power plants, nuclear medicine and other technologies, nuclear personnel have higher standards and requirements for nuclear radiation safety. MicroRNAs are a class of non-coding single-stranded RNA molecules encoded by endogenous genes with a length of about 22 nucleotides, which are involved in the regulation of post-transcriptional gene expression in animals and plants. Studies have found that circulating blood microRNAs have good stability and participate in a variety of biological processes. Specific microRNAs in circulating blood will undergo specific changes after early radiation exposure, and there is a correlation between the change degree of microRNAs and radiation dose. A large number of studies have reported that microRNAs are associated with tumor genesis and development, while the long-term biological effects of nuclear radiation include increased tumor incidence. Therefore, miRNA is a potential molecular standard for early evaluation and long-term effect follow-up of nuclear radiation injury. Real time quantitative PCR has the advantages of rapid, accurate and high sensitivity in the detection of circulating blood miRNA. If miRNA becomes a mature radiation biodosimeter, it can evaluate the radiation exposure risk more quickly and accurately. It can further evaluate the radiation dose and classify the acute radiation sickness, and effectively guide the clinical treatment. This paper summarizes the microRNAs related to nuclear radiation damage.

References

[1]  Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-Y
[2]  Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA Genes Are Transcribed by RNA Polymerase II. The EMBO Journal, 23, 4051-4060.
https://doi.org/10.1038/sj.emboj.7600385
[3]  Bohnsack, M.T., Czaplinski, K. and Gorlich, D. (2004) Exportin 5 Is a RanGTP-Dependent dsRNA-Binding Protein That Mediates Nuclear Export of Pre-miRNAs. RNA, 10, 185-191.
https://doi.org/10.1261/rna.5167604
[4]  Lund, E., Guttinger, S., Calado, A., et al. (2004) Nuclear Export of MicroRNA Precursors. Science, 303, 95-98.
https://doi.org/10.1126/science.1090599
[5]  Bhaskaran, M. and Mohan, M. (2014) MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Veterinary Pathology, 51, 759-774.
https://doi.org/10.1177/0300985813502820
[6]  Finnegan, E.F. and Pasquinelli, A.E. (2013) MicroRNA Biogenesis: Regulating the Regulators. Critical Reviews in Biochemistry and Molecular Biology, 48, 51-68.
https://doi.org/10.3109/10409238.2012.738643
[7]  Pereira, D.M., Rodrigues, P.M., Borralho, P.M., et al. (2013) Delivering the Promise of miRNA Cancer Therapeutics. Drug Discovery Today, 18, 282-289.
https://doi.org/10.1016/j.drudis.2012.10.002
[8]  Huang, Y.K. and Yu, J.C. (2015) Circulating MicroRNAs and Long Non-Coding RNAs in Gastric Cancer Diagnosis: An Update and Review. World Journal of Gastroenterology, 21, 9863-9886.
https://doi.org/10.3748/wjg.v21.i34.9863
[9]  McDonald, A.C., Raman, J.D., Shen, J., et al. (2019) Circulating MicroRNAs in Plasma before and after Radical Prostatectomy. Urology Oncology, 37, 811-814.
https://doi.org/10.1016/j.urolonc.2019.07.001
[10]  Balzano, F., Deiana, M., Dei, G.S., et al. (2015) MiRNA Stability in Frozen Plasma Samples. Molecules, 20, 19030-19040.
https://doi.org/10.3390/molecules201019030
[11]  Enelund, L., Nielsen, L.N. and Cirera, S. (2017) Evaluation of MicroRNA Stability in Plasma and Serum from Healthy Dogs. Microrna, 6, 42-52.
https://doi.org/10.2174/2211536606666170113124114
[12]  Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al. (2008) Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513-10518.
https://doi.org/10.1073/pnas.0804549105
[13]  Eakins, J.S. and Ainsbury, E.A. (2018) Quantities for Assessing High Doses to the Body: A Short Review of the Current Status. Journal of Radiological Protection, 38, 731-742.
https://doi.org/10.1088/1361-6498/aabffe
[14]  段志凯, 张忠新, 张睿凤, 等. 常用辐射剂量计的研究现状[J]. 癌变·畸变·突变, 2016, 28(4): 325-328.
[15]  王平, 吕玉民. 染色体畸变指标作为辐射生物剂量计在国内的发展与展望[J]. 中国卫生检验杂志, 2019, 29(15): 1919-1920.
[16]  Agrawala, P.K., Adhikari, J.S. and Chaudhury, N.K. (2010) Lymphocyte Chromosomal Aberration Assay in Radiation Biodosimetry. Journal of Pharmacy & Bioallied Sciences, 2, 197-201.
https://doi.org/10.4103/0975-7406.68501
[17]  Fenech, M. (2006) Cytokinesis-Block Micronucleus Assay Evolves into a “Cytome” Assay of Chromosomal Instability, Mitotic Dysfunction and Cell Death. Mutation Research, 600, 58-66.
https://doi.org/10.1016/j.mrfmmm.2006.05.028
[18]  Song, E.Y., Rizvi, S.M., Qu, C.F., et al. (2008) The Cytokinesis-Block Micronucleus Assay as a Biological Dosimeter for Targeted Alpha Therapy. Physics in Medicine & Biology, 53, 319-328.
https://doi.org/10.1088/0031-9155/53/2/001
[19]  Willems, P., August, L., Slabbert, J., et al. (2010) Automated Micronucleus (MN) Scoring for Population Triage in Case of Large Scale Radiation Events. International Journal of Radiation Biology, 86, 2-11.
https://doi.org/10.3109/09553000903264481
[20]  Bonassi, S., Fenech, M., Lando, C., et al. (2001) Human MicroNucleus Project: International Database Comparison for Results with the Cytokinesis-Block Micronucleus Assay in Human Lymphocytes: I. Effect of Laboratory Protocol, Scoring Criteria, and Host Factors on the Frequency of Micronuclei. Environmental and Molecular Mutagenesis, 37, 31-45.
https://doi.org/10.1002/1098-2280(2001)37:1<31::AID-EM1004>3.0.CO;2-P
[21]  Fenech, M., Holland, N., Chang, W.P., et al. (1999) The Human MicroNucleus Project—An International Collaborative Study on the Use of the Micronucleus Technique for Measuring DNA Damage in Humans. Mutation Research, 428, 271-283.
https://doi.org/10.1016/S1383-5742(99)00053-8
[22]  Darroudi, F., Natarajan, A.T., Bentvelzen, P.A., et al. (1998) Detection of Total- and Partial-Body Irradiation in a Monkey Model: A Comparative Study of Chromosomal Aberration, Micronucleus and Premature Chromosome Condensation Assays. International Journal of Radiation Biology, 74, 207-215.
https://doi.org/10.1080/095530098141582
[23]  Rybaczek, D. and Kowalewicz-Kulbat, M. (2011) Premature Chromosome Condensation Induced by Caffeine, 2-Aminopurine, Staurosporine and Sodium Metavanadate in S-Phase Arrested HeLa Cells Is Associated with a Decrease in Chk1 Phosphorylation, Formation of Phospho-H2AX and Minor Cytoskeletal Rearrangements. Histochemistry and Cell Biology, 135, 263-280.
https://doi.org/10.1007/s00418-011-0793-3
[24]  Kyoizumi, S., Kusunoki, Y., Hayashi, T., et al. (2005) Individual Variation of Somatic Gene Mutability in Relation to Cancer Susceptibility: Prospective Study on Erythrocyte Glycophorin a Gene Mutations of Atomic Bomb Survivors. Cancer Research, 65, 5462-5469.
https://doi.org/10.1158/0008-5472.CAN-04-1188
[25]  Stout, J.T. and Caskey, C.T. (1985) HPRT: Gene Structure, Expression, and Mutation. Annual Review of Genetics, 19, 127-148.
https://doi.org/10.1146/annurev.ge.19.120185.001015
[26]  武丽蕊, 王兰朋, 李红霞, 等. HPRT基因突变对宫颈癌放疗损伤的评估[J]. 癌变·畸变·突变, 2011, 23(6): 465-467.
[27]  Hakoda, M., Akiyama, M., Kyoizumi, S., et al. (1988) Increased Somatic Cell Mutant Frequency in Atomic Bomb Survivors. Mutation Research, 201, 39-48.
https://doi.org/10.1016/0027-5107(88)90109-1
[28]  Zhao, J., Guo, Z., Zhang, H., et al. (2013) The Potential Value of the Neutral Comet Assay and Gamma H2AX Foci Assay in Assessing the Radiosensitivity of Carbon Beam in Human Tumor Cell Lines. Radiology and Oncology, 47, 247-257.
https://doi.org/10.2478/raon-2013-0045
[29]  Moroni, M., Maeda, D., Whitnall, M.H., et al. (2013) Evaluation of the Gamma-H2AX Assay for Radiation Biodosimetry in a Swine Model. International Journal of Molecular Sciences, 14, 14119-14135.
https://doi.org/10.3390/ijms140714119
[30]  Singh, V.K., Romaine, P.L. and Seed, T.M. (2015) Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. Health Physics, 108, 607-630.
https://doi.org/10.1097/HP.0000000000000279
[31]  Williams, J.P., Brown, S.L., Georges, G.E., et al. (2010) Animal Models for Medical Countermeasures to Radiation Exposure. Radiation Research, 173, 557-578.
https://doi.org/10.1667/RR1880.1
[32]  Lopez, M. and Martin, M. (2011) Medical Management of the Acute Radiation Syndrome. Reports of Practical Oncology and Radiotherapy, 16, 138-146.
https://doi.org/10.1016/j.rpor.2011.05.001
[33]  Singh, V.K. and Hauer-Jensen, M. (2016) Gamma-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status. International Journal of Molecular Sciences, 17, 663.
https://doi.org/10.3390/ijms17050663
[34]  Singh, V.K., Newman, V.L., Romaine, P.L., et al. (2016) Use of Biomarkers for Assessing Radiation Injury and Efficacy of Countermeasures. Expert Review of Molecular Diagnostics, 16, 65-81.
https://doi.org/10.1586/14737159.2016.1121102
[35]  Templin, T., Amundson, S.A., Brenner, D.J., et al. (2011) Whole Mouse Blood MicroRNA as Biomarkers for Exposure to Gamma-Rays and (56)Fe Ion. International Journal of Radiation Biology, 87, 653-662.
https://doi.org/10.3109/09553002.2010.549537
[36]  Liu, C., Zhou, C., Gao, F., et al. (2011) MiR-34a in Age and Tissue Related Radio-Sensitivity and Serum miR-34a as a Novel Indicator of Radiation Injury. International Journal of Biological Sciences, 7, 221-233.
https://doi.org/10.7150/ijbs.7.221
[37]  Malachowska, B., Tomasik, B., Stawiski, K., et al. (2019) Circulating MicroRNAs as Biomarkers of Radiation Exposure: A Systematic Review and Meta-Analysis. International Journal of Radiation Oncology, Biology, Physics, 2, 390-402.
https://doi.org/10.1016/j.ijrobp.2019.10.028
[38]  Fendler, W., Malachowska, B., Meghani, K., et al. (2017) Evolutionarily Conserved Serum MicroRNAs Predict Radiation-Induced Fatality in Nonhuman Primates. Science Translational Medicine, 9, eaal2408.
https://doi.org/10.1126/scitranslmed.aal2408
[39]  Li, X.H., Ha, C.T. and Xiao, M. (2016) MicroRNA-30 Inhibits Antiapoptotic Factor Mcl-1 in Mouse and Human Hematopoietic Cells after Radiation Exposure. Apoptosis, 21, 708-720.
https://doi.org/10.1007/s10495-016-1238-1
[40]  Acharya, S.S., Fendler, W., Watson, J., et al. (2015) Serum MicroRNAs Are Early Indicators of Survival after Radiation-Induced Hematopoietic Injury. Science Translational Medicine, 7, 269-287.
https://doi.org/10.1126/scitranslmed.aaa6593
[41]  Li, X.H., Ha, C.T., Fu, D., et al. (2015) Delta-Tocotrienol Suppresses Radiation-Induced MicroRNA-30 and Protects Mice and Human CD34+ Cells from Radiation Injury. PLoS ONE, 10, e122258.
https://doi.org/10.1371/journal.pone.0122258
[42]  Meng, F., Henson, R., Lang, M., et al. (2006) Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines. Gastroenterology, 130, 2113-2129.
https://doi.org/10.1053/j.gastro.2006.02.057
[43]  Hu, Z., Tie, Y., Lv, G., et al. (2018) Transcriptional Activation of miR-320a by ATF2, ELK1 and YY1 Induces Cancer Cell Apoptosis under Ionizing Radiation Conditions. International Journal of Oncology, 53, 1691-1702.
https://doi.org/10.3892/ijo.2018.4497
[44]  Wei, W., He, J., Wang, J., et al. (2017) Serum MicroRNAs as Early Indicators for Estimation of Exposure Degree in Response to Ionizing Irradiation. Radiation Research, 188, 342-354.
https://doi.org/10.1667/RR14702.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133