|
循环血MicroRNA与辐射剂量相关性研究进展
|
Abstract:
[1] | Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854. https://doi.org/10.1016/0092-8674(93)90529-Y |
[2] | Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA Genes Are Transcribed by RNA Polymerase II. The EMBO Journal, 23, 4051-4060. https://doi.org/10.1038/sj.emboj.7600385 |
[3] | Bohnsack, M.T., Czaplinski, K. and Gorlich, D. (2004) Exportin 5 Is a RanGTP-Dependent dsRNA-Binding Protein That Mediates Nuclear Export of Pre-miRNAs. RNA, 10, 185-191. https://doi.org/10.1261/rna.5167604 |
[4] | Lund, E., Guttinger, S., Calado, A., et al. (2004) Nuclear Export of MicroRNA Precursors. Science, 303, 95-98.
https://doi.org/10.1126/science.1090599 |
[5] | Bhaskaran, M. and Mohan, M. (2014) MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Veterinary Pathology, 51, 759-774. https://doi.org/10.1177/0300985813502820 |
[6] | Finnegan, E.F. and Pasquinelli, A.E. (2013) MicroRNA Biogenesis: Regulating the Regulators. Critical Reviews in Biochemistry and Molecular Biology, 48, 51-68. https://doi.org/10.3109/10409238.2012.738643 |
[7] | Pereira, D.M., Rodrigues, P.M., Borralho, P.M., et al. (2013) Delivering the Promise of miRNA Cancer Therapeutics. Drug Discovery Today, 18, 282-289. https://doi.org/10.1016/j.drudis.2012.10.002 |
[8] | Huang, Y.K. and Yu, J.C. (2015) Circulating MicroRNAs and Long Non-Coding RNAs in Gastric Cancer Diagnosis: An Update and Review. World Journal of Gastroenterology, 21, 9863-9886. https://doi.org/10.3748/wjg.v21.i34.9863 |
[9] | McDonald, A.C., Raman, J.D., Shen, J., et al. (2019) Circulating MicroRNAs in Plasma before and after Radical Prostatectomy. Urology Oncology, 37, 811-814. https://doi.org/10.1016/j.urolonc.2019.07.001 |
[10] | Balzano, F., Deiana, M., Dei, G.S., et al. (2015) MiRNA Stability in Frozen Plasma Samples. Molecules, 20, 19030-19040. https://doi.org/10.3390/molecules201019030 |
[11] | Enelund, L., Nielsen, L.N. and Cirera, S. (2017) Evaluation of MicroRNA Stability in Plasma and Serum from Healthy Dogs. Microrna, 6, 42-52. https://doi.org/10.2174/2211536606666170113124114 |
[12] | Mitchell, P.S., Parkin, R.K., Kroh, E.M., et al. (2008) Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513-10518.
https://doi.org/10.1073/pnas.0804549105 |
[13] | Eakins, J.S. and Ainsbury, E.A. (2018) Quantities for Assessing High Doses to the Body: A Short Review of the Current Status. Journal of Radiological Protection, 38, 731-742. https://doi.org/10.1088/1361-6498/aabffe |
[14] | 段志凯, 张忠新, 张睿凤, 等. 常用辐射剂量计的研究现状[J]. 癌变·畸变·突变, 2016, 28(4): 325-328. |
[15] | 王平, 吕玉民. 染色体畸变指标作为辐射生物剂量计在国内的发展与展望[J]. 中国卫生检验杂志, 2019, 29(15): 1919-1920. |
[16] | Agrawala, P.K., Adhikari, J.S. and Chaudhury, N.K. (2010) Lymphocyte Chromosomal Aberration Assay in Radiation Biodosimetry. Journal of Pharmacy & Bioallied Sciences, 2, 197-201. https://doi.org/10.4103/0975-7406.68501 |
[17] | Fenech, M. (2006) Cytokinesis-Block Micronucleus Assay Evolves into a “Cytome” Assay of Chromosomal Instability, Mitotic Dysfunction and Cell Death. Mutation Research, 600, 58-66. https://doi.org/10.1016/j.mrfmmm.2006.05.028 |
[18] | Song, E.Y., Rizvi, S.M., Qu, C.F., et al. (2008) The Cytokinesis-Block Micronucleus Assay as a Biological Dosimeter for Targeted Alpha Therapy. Physics in Medicine & Biology, 53, 319-328. https://doi.org/10.1088/0031-9155/53/2/001 |
[19] | Willems, P., August, L., Slabbert, J., et al. (2010) Automated Micronucleus (MN) Scoring for Population Triage in Case of Large Scale Radiation Events. International Journal of Radiation Biology, 86, 2-11.
https://doi.org/10.3109/09553000903264481 |
[20] | Bonassi, S., Fenech, M., Lando, C., et al. (2001) Human MicroNucleus Project: International Database Comparison for Results with the Cytokinesis-Block Micronucleus Assay in Human Lymphocytes: I. Effect of Laboratory Protocol, Scoring Criteria, and Host Factors on the Frequency of Micronuclei. Environmental and Molecular Mutagenesis, 37, 31-45. https://doi.org/10.1002/1098-2280(2001)37:1<31::AID-EM1004>3.0.CO;2-P |
[21] | Fenech, M., Holland, N., Chang, W.P., et al. (1999) The Human MicroNucleus Project—An International Collaborative Study on the Use of the Micronucleus Technique for Measuring DNA Damage in Humans. Mutation Research, 428, 271-283. https://doi.org/10.1016/S1383-5742(99)00053-8 |
[22] | Darroudi, F., Natarajan, A.T., Bentvelzen, P.A., et al. (1998) Detection of Total- and Partial-Body Irradiation in a Monkey Model: A Comparative Study of Chromosomal Aberration, Micronucleus and Premature Chromosome Condensation Assays. International Journal of Radiation Biology, 74, 207-215. https://doi.org/10.1080/095530098141582 |
[23] | Rybaczek, D. and Kowalewicz-Kulbat, M. (2011) Premature Chromosome Condensation Induced by Caffeine, 2-Aminopurine, Staurosporine and Sodium Metavanadate in S-Phase Arrested HeLa Cells Is Associated with a Decrease in Chk1 Phosphorylation, Formation of Phospho-H2AX and Minor Cytoskeletal Rearrangements. Histochemistry and Cell Biology, 135, 263-280. https://doi.org/10.1007/s00418-011-0793-3 |
[24] | Kyoizumi, S., Kusunoki, Y., Hayashi, T., et al. (2005) Individual Variation of Somatic Gene Mutability in Relation to Cancer Susceptibility: Prospective Study on Erythrocyte Glycophorin a Gene Mutations of Atomic Bomb Survivors. Cancer Research, 65, 5462-5469. https://doi.org/10.1158/0008-5472.CAN-04-1188 |
[25] | Stout, J.T. and Caskey, C.T. (1985) HPRT: Gene Structure, Expression, and Mutation. Annual Review of Genetics, 19, 127-148. https://doi.org/10.1146/annurev.ge.19.120185.001015 |
[26] | 武丽蕊, 王兰朋, 李红霞, 等. HPRT基因突变对宫颈癌放疗损伤的评估[J]. 癌变·畸变·突变, 2011, 23(6): 465-467. |
[27] | Hakoda, M., Akiyama, M., Kyoizumi, S., et al. (1988) Increased Somatic Cell Mutant Frequency in Atomic Bomb Survivors. Mutation Research, 201, 39-48. https://doi.org/10.1016/0027-5107(88)90109-1 |
[28] | Zhao, J., Guo, Z., Zhang, H., et al. (2013) The Potential Value of the Neutral Comet Assay and Gamma H2AX Foci Assay in Assessing the Radiosensitivity of Carbon Beam in Human Tumor Cell Lines. Radiology and Oncology, 47, 247-257. https://doi.org/10.2478/raon-2013-0045 |
[29] | Moroni, M., Maeda, D., Whitnall, M.H., et al. (2013) Evaluation of the Gamma-H2AX Assay for Radiation Biodosimetry in a Swine Model. International Journal of Molecular Sciences, 14, 14119-14135.
https://doi.org/10.3390/ijms140714119 |
[30] | Singh, V.K., Romaine, P.L. and Seed, T.M. (2015) Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. Health Physics, 108, 607-630. https://doi.org/10.1097/HP.0000000000000279 |
[31] | Williams, J.P., Brown, S.L., Georges, G.E., et al. (2010) Animal Models for Medical Countermeasures to Radiation Exposure. Radiation Research, 173, 557-578. https://doi.org/10.1667/RR1880.1 |
[32] | Lopez, M. and Martin, M. (2011) Medical Management of the Acute Radiation Syndrome. Reports of Practical Oncology and Radiotherapy, 16, 138-146. https://doi.org/10.1016/j.rpor.2011.05.001 |
[33] | Singh, V.K. and Hauer-Jensen, M. (2016) Gamma-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status. International Journal of Molecular Sciences, 17, 663. https://doi.org/10.3390/ijms17050663 |
[34] | Singh, V.K., Newman, V.L., Romaine, P.L., et al. (2016) Use of Biomarkers for Assessing Radiation Injury and Efficacy of Countermeasures. Expert Review of Molecular Diagnostics, 16, 65-81.
https://doi.org/10.1586/14737159.2016.1121102 |
[35] | Templin, T., Amundson, S.A., Brenner, D.J., et al. (2011) Whole Mouse Blood MicroRNA as Biomarkers for Exposure to Gamma-Rays and (56)Fe Ion. International Journal of Radiation Biology, 87, 653-662.
https://doi.org/10.3109/09553002.2010.549537 |
[36] | Liu, C., Zhou, C., Gao, F., et al. (2011) MiR-34a in Age and Tissue Related Radio-Sensitivity and Serum miR-34a as a Novel Indicator of Radiation Injury. International Journal of Biological Sciences, 7, 221-233.
https://doi.org/10.7150/ijbs.7.221 |
[37] | Malachowska, B., Tomasik, B., Stawiski, K., et al. (2019) Circulating MicroRNAs as Biomarkers of Radiation Exposure: A Systematic Review and Meta-Analysis. International Journal of Radiation Oncology, Biology, Physics, 2, 390-402. https://doi.org/10.1016/j.ijrobp.2019.10.028 |
[38] | Fendler, W., Malachowska, B., Meghani, K., et al. (2017) Evolutionarily Conserved Serum MicroRNAs Predict Radiation-Induced Fatality in Nonhuman Primates. Science Translational Medicine, 9, eaal2408.
https://doi.org/10.1126/scitranslmed.aal2408 |
[39] | Li, X.H., Ha, C.T. and Xiao, M. (2016) MicroRNA-30 Inhibits Antiapoptotic Factor Mcl-1 in Mouse and Human Hematopoietic Cells after Radiation Exposure. Apoptosis, 21, 708-720. https://doi.org/10.1007/s10495-016-1238-1 |
[40] | Acharya, S.S., Fendler, W., Watson, J., et al. (2015) Serum MicroRNAs Are Early Indicators of Survival after Radiation-Induced Hematopoietic Injury. Science Translational Medicine, 7, 269-287.
https://doi.org/10.1126/scitranslmed.aaa6593 |
[41] | Li, X.H., Ha, C.T., Fu, D., et al. (2015) Delta-Tocotrienol Suppresses Radiation-Induced MicroRNA-30 and Protects Mice and Human CD34+ Cells from Radiation Injury. PLoS ONE, 10, e122258.
https://doi.org/10.1371/journal.pone.0122258 |
[42] | Meng, F., Henson, R., Lang, M., et al. (2006) Involvement of Human Micro-RNA in Growth and Response to Chemotherapy in Human Cholangiocarcinoma Cell Lines. Gastroenterology, 130, 2113-2129.
https://doi.org/10.1053/j.gastro.2006.02.057 |
[43] | Hu, Z., Tie, Y., Lv, G., et al. (2018) Transcriptional Activation of miR-320a by ATF2, ELK1 and YY1 Induces Cancer Cell Apoptosis under Ionizing Radiation Conditions. International Journal of Oncology, 53, 1691-1702.
https://doi.org/10.3892/ijo.2018.4497 |
[44] | Wei, W., He, J., Wang, J., et al. (2017) Serum MicroRNAs as Early Indicators for Estimation of Exposure Degree in Response to Ionizing Irradiation. Radiation Research, 188, 342-354. https://doi.org/10.1667/RR14702.1 |