全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SnO2胶体的电子传输层制备及应用研究
Research on Preparation and Application of Electron Transport Layer Based on SnO2 Colloid

DOI: 10.12677/APP.2020.109051, PP. 381-390

Keywords: 钙钛矿太阳能电池,二氧化锡,电子传输层
Perovskite Solar Cell
, Tin Oxide, Electron Transport Layer

Full-Text   Cite this paper   Add to My Lib

Abstract:

电子传输层是钙钛矿太阳能电池的重要组成部分,其性能改进能有效提高钙钛矿太阳能电池的效率。近年来SnO2被证明具有优异的光电性能,比如好的光学透明性,适中的带宽和高的电子迁移率,已被成功运用到钙钛矿太阳能电池的制备中。本文中我们采用不同比例的甲醇和水在室温下合成了SnO2胶体,采用旋涂法和低温退火的方法制备了SnO2电子传输层。研究发现用甲醇与水的比例(醇水比)为9:1,SnO2的浓度为0.1 mol/L时配备的氧化锡胶体制备的电子传输层具有最佳的电子传输性能,以之为基础制备的钙钛矿太阳能电池可以获得最佳的光电转换效率19.16%,相应的短路电流密度(JSC)为24.75 mA/cm2,开路电压(Voc)为1.03 V,填充因子(FF)为75%。在用甲醇与水的比例为3:1、5:1、7:1和11:1的胶体制备的电子传输层上制备的电池效率分别为13.88%、15.64%、17.35%和18.3%。经研究发现制备在醇水比为9:1电子传输层上的电池的性能最佳,并且回滞效应几乎可以忽略,本工作提供了一种在低温下方便的制备SnO2电子传输层的方法。
The electron transport layer is an important part of perovskite solar cells, its performance improvement can enhance the power conversion efficiency of the perovskite solar cells effectively. SnO2 has been successfully applied to the preparation of perovskite solar cells in recent years with excellent photoelectronic properties, such as good optical transparency, proper band width and high electron mobility. In this paper, we synthesize SnO2 colloids with different ratios with methanol and water at room temperature, and prepare the SnO2 electron transport layer by spin coating combined with low temperature annealing. It is found that when the ratio of methanol and water is 9:1 and the concentration of SnO2 is 0.1 mol/L, the electron transport layer prepared with tin oxide colloid has the best electron transport performance. The perovskite solar energy prepared on the electron transport layer present the best power conversion efficiency of 19.16% with Voc of 1.03 V, JSC of 24.75 mA/cm2 and FF of 0.75. The results show that the cell efficiency is 13.88%, 15.64%, 17.35% and 18.3% on the electron transport layer (ETL) with methanol-water ratio of 3:1, 5:1, 7:1 and 11:1, respectively. It is found that the solar cells prepared on 9:1 electron transport layer present the best performance, and the hysteresis is negligible. The present work provides a convenient method for preparing the SnO2 electron transport layer at low temperature.

References

[1]  Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S. and Yang, Y. (2014) Interface Engineering of Highly Ef-ficient Perovskite Solar Cells. Science, 345, 542-546.
https://doi.org/10.1126/science.1254050
[2]  Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organo-Metal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051.
https://doi.org/10.1021/ja809598r
[3]  Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A. and Park, N.-G. (2012) Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2, Article No. 591.
https://doi.org/10.1038/srep00591
[4]  Liu, M., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 395-398.
https://doi.org/10.1038/nature12509
[5]  Im, J.-H., Jang, I.-H., Pellet, N., Gr?tzel, M. and Park, N.-G. (2014) Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells. Nature Nanotechnology, 9, 927-932.
https://doi.org/10.1038/nnano.2014.181
[6]  Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J. and Seok, S.I. (2015) Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature, 517, 476-480.
https://doi.org/10.1038/nature14133
[7]  Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M.K. and Gr?tzel, M. (2016) Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy & Environmental Science, 9, 1989-1997.
https://doi.org/10.1039/C5EE03874J
[8]  Yang, W.S., Park, B.-W., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U. and Seok, S.I. (2017) Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science, 356, 1376-1379.
https://doi.org/10.1126/science.aan2301
[9]  Jeon, N.J., Na, H., Jung, E.H., Yang, T.-Y., Lee, Y.G., Kim, G. and Seo, J. (2018) A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Nature Energy, 3, 682-689.
https://doi.org/10.1038/s41560-018-0200-6
[10]  Min, H., Kim, M., Lee, S.-U., Kim, H., Kim, G., Choi, K. and Seok, S.I. (2019) Efficient, Stable Solar Cells by Using Inherent Bandgap of α-Phase Formamidinium Lead Iodide. Science, 366, 749-753.
https://doi.org/10.1126/science.aay7044
[11]  The National Renewable Energy Laboratory of the U.S. Department of Energy (2020) Best Research Cell Efficiency Chart. https://www.nrel.gov/pv/cellefficiency.html
[12]  Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L. and Meredith, P. (2014) Electro-Optics of Perovskite Solar Cells. Nature Photonics, 9, 106-112.
https://doi.org/10.1038/nphoton.2014.284
[13]  Yin, W.-J., Shi, T. and Yan, Y. (2014) Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Advanced Materials, 26, 4653-4658.
https://doi.org/10.1002/adma.201306281
[14]  Yang, D., Zhou, X., Yang, R., Yang, Z., Yu, W., Wang, X. and Chang, R.P.H. (2016) Surface Optimization to Eliminate Hysteresis for Record Efficiency Planar Perovskite Solar Cells. Energy & Environmental Science, 9, 3071-3078.
https://doi.org/10.1039/C6EE02139E
[15]  Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X. and Han, L. (2015) Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Charge Extraction Layers. Science, 350, 944-948.
https://doi.org/10.1126/science.aad1015
[16]  Ke, W., Zhao, D., Cimaroli, A.J., Grice, C.R., Qin, P., Liu, Q. and Fang, G. (2015) Effects of Annealing Temperature of Tin Oxide Electron Selective Layers on the Performance of Per-ovskite Solar Cells. Journal of Materials Chemistry A, 3, 24163-24168.
https://doi.org/10.1039/C5TA06574G
[17]  Liu, D. and Kelly, T.L. (2013) Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics, 8, 133-138.
https://doi.org/10.1038/nphoton.2013.342
[18]  Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H. and Yan, Y. (2015) Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 137, 6730-6733.
https://doi.org/10.1021/jacs.5b01994
[19]  Ren, X., Yang, D., Yang, Z., Feng, J., Zhu, X., Niu, J. and Liu, S.F. (2017) Solution-Processed Nb:SnO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 9, 2421-2429.
https://doi.org/10.1021/acsami.6b13362
[20]  Liu, H., Chen, Z., Wang, H., Ye, F., Ma, J., Zheng, X. and Fang, G. (2019) A Facile Room Temperature Solution Synthesis of SnO2 Quantum Dots for Perovskite Solar Cells. Journal of Materials Chemistry A, 7, 10636-10643.
https://doi.org/10.1039/C8TA12561A
[21]  Jiang, Q., Chu, Z., Wang, P., Yang, X., Liu, H., Wang, Y. and You, J. (2017) Planar-Structure Perovskite Solar Cells with Efficiency beyond 21%. Advanced Materials, 29, Article ID: 1703852.
https://doi.org/10.1002/adma.201703852

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133