全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TGF-β和PD-L1在膀胱癌浸润发展中的作用
The Role of TGF-β and PD-L1 in the Invasion and Development of Bladder Cancer

DOI: 10.12677/ACM.2020.109288, PP. 1917-1925

Keywords: 膀胱癌,转化生长因子β,程序性死亡配体-1,免疫抑制,免疫治疗
Bladder Cancer
, Transforming Growth Factor-β, Programmed Death Ligand-1, Immunosuppression, Immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

膀胱癌是泌尿系统第二大常见肿瘤,其发病率和死亡率呈逐年上升趋势。近年来有多项研究发现转化生长因子β (transforming growth factor-β, TGF-β)和程序性死亡配体1 (Programmed death ligand 1, PD-L1)对膀胱癌浸润发展起重要作用,但其机制仍缺乏综合性论述。PD-L1/PD-1信号通路中分子异常表达已成为抗肿瘤靶向治疗的研究热点,而对TGF-β分子水平异常表达以及其与PD-L1/PD-1信号通路的相互作用探索较少,对TGF-β和PD-L1/PD-1信号通路的阐释有助于膀胱癌的靶向联合免疫治疗。本文分别简述了TGF-β和PD-L1单独作用以及共同作用对肿瘤微环境免疫抑制的影响。创新性地提出TGF-β和PD-L1/PD-1信号通路可通过以调节性T细胞(regulatory T cell, Treg)为桥梁的相互作用发挥联合免疫抑制作用,并强调了两者上游调控分子机制的重要性。
Bladder cancer is the second most common tumor in the urinary system. Its incidence rate and mortality rate are increasing year by year. In recent years, many studies have found that transforming growth factor-β (TGF-β) and programmed death ligand 1 (PD-L1) play an important role in the invasion and development of bladder cancer, but the mechanism is still lack of comprehensive discussion. The abnormal expression of molecules in PD-L1/PD-1 signaling pathway has become a research hotspot of anti-tumor targeted therapy. However, there are few researches on the abnormal expression of TGF-β at molecular level and its interaction with PD-L1/PD-1 signaling pathway. The interpretation of TGF-β and PD-L1/PD-1 signaling pathway is helpful for targeted combined immunotherapy of bladder cancer. In this paper, the effects of TGF-β and PD-L1 on tumor microenvironment immunosuppression were reviewed. It is innovatively proposed that TGF-β and PD-L1/PD-1 signaling pathways can play a joint immunosuppressive role through the interaction of regulatory T cells (Treg) as a bridge, and the importance of upstream regulatory molecular mechanism of both is emphasized.

References

[1]  Chen,W.Q., Zheng, R.S., Baade, P.D., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
https://doi.org/10.3322/caac.21338
[2]  Lobo, N., Mount, C., Omar, K., Nair, R., Thurairaja, R. and Khan, M.S. (2017) Landmarks in the Treatment of Muscle-Invasive Bladder Cancer. Nature Reviews Urology, 14, 565-574.
[3]  Schmierer, B. and Hill, C.S. (2007) Tgfβ-SMAD Signal Transduction: Molecular Specificity and Functional Flexibility. Nature Reviews Molecular Cell Biology, 8, 970-982.
https://doi.org/10.1038/nrm2297
[4]  Morikawa, M., Derynck, R. and Miyazono, K. (2016) TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harbor Perspectives in Biology, 8, A021873.
https://doi.org/10.1101/cshperspect.a021873
[5]  Harradine, K.A. and Akhurst, R.J. (20096) Mutations of Tgfβ Signaling Molecules in Human Disease. Annals of Medicine, 38, 403-414.
https://doi.org/10.1080/07853890600919911
[6]  Gomis, R.R., Alarcón, C., He, W., et al. (2006) A Foxo-Smad Synexpression Group in Human Keratinocytes. Proc Proceedings of the National Academy of Sciences of the United States of America, 103, 12747-12752.
https://doi.org/10.1073/pnas.0605333103
[7]  Li, W., Kidiyoor, A., Hu, Y.Y., et al. (2015) Evaluation of Transforming Growth Factor-β1 Suppress Pokemon or Epithelial-Mesenchymal Transition Expression in Human Bladder Cancer Cells. Tumor Biology, 36, 1155-1162.
https://doi.org/10.1007/s13277-014-2625-2
[8]  Eder, I.E., Stenzl, A., Hobisch, A., Cronauer, M.V., Bartsch, G. and Klocker, H. (1996) Transforming Growth Factors-Beta 1 and Beta 2 in Serum and Urine from Patients with Bladder Carcinoma. Journal of Urology, 156, 953-957.
https://doi.org/10.1016/S0022-5347(01)65670-2
[9]  Smith, A.L., Iwanaga, R., Drasin, D.J., et al. (2012) The miR-106b-25 Cluster Targets Smad7, Activates TGF-β Signaling, and Induces EMT and Tumor Initiating Cell Characteristics Downstream of Six1 in Human Breast Cancer. Oncogene, 31, 5162-5171.
https://doi.org/10.1038/onc.2012.11
[10]  Waerner, T., Alacakaptan, M., Tamir, I., et al. (2006) ILEI: A Cytokine Essential for EMT, Tumor Formation, and Late Events in Metastasis in Epithelial Cells. Cancer Cell, 10, 227-239.
https://doi.org/10.1016/j.ccr.2006.07.020
[11]  Nollet, F., Kools, P. and Van Roy, F. (2000) Phylogenetic Analysis of the Cadherin Superfamily Allows Identification of Six Major Subfamilies besides Several Solitary Members. Journal of Molecular Biology, 299, 551-572.
https://doi.org/10.1006/jmbi.2000.3777
[12]  Chaw, S.Y., Abdul Majeed, A., Dalley, A.J., Chan, A., Stein, S. and Farah, C.S. (2012) Epithelial to Mesenchymal Transition (EMT) Biomarkers—E-Cadherin, Beta-Catenin, APC and Vimentin—In Oral Squamous Cell Carcinogenesis and Transformation. Oral Oncology, 48, 997-1006.
https://doi.org/10.1016/j.oraloncology.2012.05.011
[13]  Froeling, F.E., Mirza, T.A., Feakins, R.M., et al. (2009) Organotypic Culture Model of Pancreatic Cancer Demonstrates That Stromal Cells Modulate E-Cadherin, β-Catenin, and Ezrin Expression in Tumor Cells. The American Journal of Pathology, 175, 636-648.
https://doi.org/10.2353/ajpath.2009.090131
[14]  De Wever, O., Pauwels, P., De Craene, B., et al. (2008) Molecular and Pathological Signatures of Epithelial-Mesenchymal Transitions at the Cancer Invasion Front. Histochemistry and Cell Biology, 130, 481-494.
https://doi.org/10.1007/s00418-008-0464-1
[15]  Yilmaz, M. and Christofori, G. (2009) EMT, the Cytoskeleton, and Cancer Cell Invasion. Cancer and Metastasis Reviews, 28, 15-33.
https://doi.org/10.1007/s10555-008-9169-0
[16]  Van Der Horst, G., Bos, L. and Van Der Pluijm, G. (2012) Epithelial Plasticity, Cancer Stem Cells, and the Tumor-Supportive Stroma in Bladder Carcinoma. Molecular Cancer Research, 10, 995-1009.
https://doi.org/10.1158/1541-7786.MCR-12-0274
[17]  Thuault, S., Tan, E.J., Peinado, H., Cano, A., Heldin, C.H. and Moustakas, A. (2008) HMGA2 and Smads Co-Regulate SNAIL1 Expression during Induction of Epithelial-To-Mesenchymal Transition. The Journal of Biological Chemistry, 283, 33437-33446.
https://doi.org/10.1074/jbc.M802016200
[18]  闫鹏, 达林泰, 德乐黑巴特尔. TGF-β/Smad信号通路在恶性肿瘤作用及基理研究进展[J]. 内蒙古医科大学学报, 2018, 40(5): 541-544.
[19]  Shimizu, J., Izumi, T., Arimitsu, N., et al. (2012) Skewed TGFβ/Smad Signalling Pathway in T Cells in Patients with Beh?et’s Disease. Clinical and Experimental Rheumatology, 30, S35-S39.
[20]  Lee, J.J., Chang, Y.L., Lai, W.L., et al. (2011) Increased Prevalence of Interleukin-17-Producing CD4+ Tumor Infiltrating Lymphocytes in Human Oral Squamous Cell Carcinoma. Head & Neck, 33, 1301-1308.
https://doi.org/10.1002/hed.21607
[21]  Letterio, J.J. and Roberts, A.B. (1998) Regulation of Immune Responses by TGF-β. Annual Review of Immunology, 16, 137-161.
https://doi.org/10.1146/annurev.immunol.16.1.137
[22]  Chu, T.H., Yang, C.C., Liu, C.J., Lui, M.T., Lin, S.C. and Chang, K.W. (2013) MiR-211 Promotes the Progression of Head and Neck Carcinomas by Targeting TGFβRII. Cancer Letters, 337, 115-124.
https://doi.org/10.1016/j.canlet.2013.05.032
[23]  Topalian, S.L., Taube, J.M., Anders, R.A. and Pardoll, D.M. (2016) Mechanism-Driven Biomarkers to Guide Immune Checkpoint Blockade in Cancer Therapy. Nature Reviews Cancer, 16, 275-287.
https://doi.org/10.1038/nrc.2016.36
[24]  Sharpe, A.H., Wherry, E.J., Ahmed, R. and Freeman, G.J. (2007) The Function of Programmed Cell Death 1 and Its Ligands in Regulating Autoimmunity and Infection. Nature Immunology, 8, 239-245.
https://doi.org/10.1038/ni1443
[25]  Garrido, F., Cabrera, T., Concha, A., Glew, S., Ruiz-Cabello, F. and Stern, P.L. (1993) Natural History of HLA Expression during Tumour Development. Immunology Today, 14, 491-499.
https://doi.org/10.1016/0167-5699(93)90264-L
[26]  Muenst, S., Schaerli, A.R., Gao, F., et al. (2014) Expression of Programmed Death Ligand 1 (PD-L1) Is Associated with Poor Prognosis in Human Breast Cancer. Breast Cancer Research and Treatment, 146, 15-24.
https://doi.org/10.1007/s10549-014-2988-5
[27]  Taube, J.M., Anders, R.A., Young, G.D., et al. (2012) Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape. Science Translational Medicine, 4, 127ra37.
https://doi.org/10.1126/scitranslmed.3003689
[28]  Liu, J.Z., Hamrouni, A., Wolowiec, D., et al. (2007) Plasma Cells from Multiple Myeloma Patients Express B7-H1 (PD-L1) and Increase Expression after Stimulation with IFN-γ and TLR Ligands via a Myd88-, TRAF6-, and MEK-Dependent Pathway. Blood, 110, 296-304.
https://doi.org/10.1182/blood-2006-10-051482
[29]  Bellmunt, J., Powles, T. and Vogelzang, N.J. (2017) A Review on the Evolution of PD-1/PD-L1 Immunotherapy for Bladder Cancer: the Future Is Now. Cancer Treatment Reviews, 54, 58-67.
https://doi.org/10.1016/j.ctrv.2017.01.007
[30]  Lin, Z., Xu, Y., Zhang, Y., et al. (2016) The Prevalence and Clinicopathological Features of Programmed Death-Ligand 1 (PD-L1) Expression: A Pooled Analysis of Literatures. Oncotarget, 7, 15033-15046.
https://doi.org/10.18632/oncotarget.7590
[31]  Nakanishi, J., Wada, Y., Matsumoto, K., Azuma, M., Kikuchi, K. and Ueda, S. (2007) Overexpression of B7-H1 (PD-L1) Significantly Associates with Tumor Grade and Postoperative Prognosis in Human Urothelial Cancers. Cancer Immunology, Immunotherapy, 56, 1173-1182.
https://doi.org/10.1007/s00262-006-0266-z
[32]  Khong, H.T., Wang, Q.J. and Rosenberg, S.A. (2004) Identification of Multiple Antigens Recognized by Tumor-Infiltrating Lymphocytes from a Single Patient: Tumor Escape by Antigen Loss and Loss of MHC Expression. Journal of Immunotherapy, 27, 184-190.
https://doi.org/10.1097/00002371-200405000-00002
[33]  Rosenberg, S.A. (2001) Progress in Human Tumour Immunology and Immunotherapy. Nature, 411, 380-384.
https://doi.org/10.1038/35077246
[34]  Powles, T., Eder, J.P., Fine, G.D., et al. (2014) MPDL3280A (Anti-PD-L1) Treatment Leads to Clinical Activity in Metastatic Bladder Cancer. Nature, 515, 558-562.
https://doi.org/10.1038/nature13904
[35]  Flies, D.B. and Chen, L. (2007) The New B7s: Playing A Pivotal Role in Tumor Immunity. Journal of Immunotherapy, 30, 251-260.
https://doi.org/10.1097/CJI.0b013e31802e085a
[36]  Liu, L., Liu, X., Ren, X., et al. (2016) Smad2 and Smad3 Have Differential Sensitivity in Relaying TGFβ Signaling and Inversely Regulate Early Lineage Specification. Scientific Reports, 6, Article ID: 21602.
https://doi.org/10.1038/srep21602
[37]  Sun, X., Cui, Y., Feng, H., Liu, H. and Liu, X. (2019) TGF-β Signaling Controls Foxp3 Methylation and T Reg Cell Differentiation by Modulating Uhrf1 Activity. Journal of Experimental Medicine, 216, 2819-2837.
https://doi.org/10.1084/jem.20190550
[38]  Liu, M., Li, S. and Li, M.O. (2018) TGF-β Control of Adaptive Immune Tolerance: A Break from Treg Cells. BioEssays, 40, Article ID: 1800063.
https://doi.org/10.1002/bies.201800063
[39]  Cohen, N., Mouly, E., Hamdi, H., et al. (2006) GILZ Expression in Human Dendritic Cells Redirects Their Maturation and Prevents Antigen-Specific T Lymphocyte Response. Blood, 107, 2037-2044.
https://doi.org/10.1182/blood-2005-07-2760
[40]  Francisco, L.M., Salinas, V.H., Brown, K.E., et al. (2009) PD-L1 Regulates the Development, Maintenance, and Function of Induced Regulatory T Cells. Journal of Experimental Medicine, 206, 3015-3029.
https://doi.org/10.1084/jem.20090847

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133