全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

I

DOI: 10.1177/0278364918812981

Keywords: Robot motion planning,human motion prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a motion planning algorithm to compute collision-free and smooth trajectories for high-degree-of-freedom (high-DOF) robots interacting with humans in a shared workspace. Our approach uses offline learning of human actions along with temporal coherence to predict the human actions. Our intention-aware online planning algorithm uses the learned database to compute a reliable trajectory based on the predicted actions. We represent the predicted human motion using a Gaussian distribution and compute tight upper bounds on collision probabilities for safe motion planning. We also describe novel techniques to account for noise in human motion prediction. We highlight the performance of our planning algorithm in complex simulated scenarios and real-world benchmarks with 7-DOF robot arms operating in a workspace with a human performing complex tasks. We demonstrate the benefits of our intention-aware planner in terms of computing safe trajectories in such uncertain environments

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133