全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Multivariable least squares support vector machine with time integral operator for the prediction of bearing performance degradation

DOI: 10.1177/0954406218786323

Keywords: Least squares support vector machine,time integral operator,performance degradation prediction,multivariable,rolling bearing

Full-Text   Cite this paper   Add to My Lib

Abstract:

The prediction of performance degradation is significant for the health monitoring of rolling bearing, which helps to greatly reduce the loss caused by potential faults in the entire life cycle of rotating machinery. As a new method of machine learning based on statistical learning theory, least squares support vector machine is developed and has achieved good results. However, it lacks the description of the time-sum effect and delay characteristics, which cannot fully describe the performance degradation process. To overcome the problem, a new time shift least squares support vector machine with integral operator is proposed. What is more, multivariable prediction model is introduced to describe the process from multiple perspectives. In this model, different features are extracted to construct sample pairs through a moving window. Then these features are decomposed in time domain using a set of orthogonal basis functions to simplify computation. Furthermore, the model adaptability is also improved through an iterative updating strategy. Bearing fault experiments show that the proposed model outperforms the general method

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133