全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Couette shearing device for the investigation of shear

DOI: 10.1177/0391398818802950

Keywords: Blood damage,Couette shearing device,left ventricular assist device,bleeding

Full-Text   Cite this paper   Add to My Lib

Abstract:

Continuous-flow left ventricular assist devices have evolved from short-time therapy into permanent or so-called destination therapy. One complication in long-term usage is bleeding, which is presumably attributed to shear-induced interference of left ventricular assist devices with the coagulation system. The influence of dynamic shear stresses on primary hemostasis by single or multiple passes through left ventricular assist devices was investigated. A novel Couette-type shearing device, especially fitted to simulate left ventricular assist devices with highly dynamic and repetitive stresses, was developed. To evaluate the clotting ability of the blood and thus the bleeding tendency, the closure time of the platelet function analyzer (PFA-100?, Dade Behring, Marburg, Germany) was used. The relationship of the PFA-100 closure time was fitted to measurement points with shear stress and exposure time as parameters. 76 samples of human blood collected from four different healthy donors in sodium-citrate anticoagulant solution were tested, including 20 control samples. A damage model according to the power law approach could be developed. A linear correlation of shear stress and exposure time to the PFA-100 closure time could be determined. In addition, a model was developed to calculate the increase in the PFA closure time on the basis of shear stress over time curves. With the shearing device, half-sine-wave-shaped shear stress patterns relevant to rotary blood pumps can be achieved with very good repeatability. The proposed damage model could be used to compare and optimize left ventricular assist devices under development. The tests showed a significant decrease in coagulability after only a few repetitions

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133