全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Optimal sensor placement for cable force monitoring based on multioutput support vector regression model

DOI: 10.1177/1369433218772342

Keywords: cable force prediction,information entropy,multioutput support vector regression,optimal sensor placement,structural health monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cable force monitoring is an essential and critical part of structural health monitoring for cable-supported bridges. The quality of obtained information depends considerably on the number and location of limited sensors. The purpose of this article is to provide a method for optimal sensor placement for cable force monitoring in cable-supported bridges. Based on the spatial correlation between neighbouring or symmetrical cable forces, the structural information of non-monitored cables can be predicted by multioutput support vector regression models, established between monitored (input) and the non-monitored (output) cable forces. The number and placement of cable force sensors have significant influence on prediction performance of established multioutput support vector regression models. The proposed optimal sensor configuration is to select multioutput support vector regression models with minimum prediction error from all possible sensor locations. In this study, information entropy is employed to measure the prediction performance of different sensor configurations and formulate the objective function, optimised by three computationally effective algorithms: forward sequential sensor placement algorithm, backward sequential sensor placement algorithm and genetic algorithm. The application of proposed method to Nanjing No. 3 Yangtze River Bridge confirmed the efficiency, accuracy and effectiveness of the proposed method

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133