全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Rainfall Variability under Present and Future Climate Scenarios Using the Rossby Center Bias-Corrected Regional Climate Model

DOI: 10.4236/ajcc.2020.93016, PP. 243-265

Keywords: CORDEX, Climate Change, Bias Correction, Ensemble, Rainfall, Kenya, RCA4

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study sought to determine the spatial and temporal variability of rainfall under past and future climate scenarios. The data used comprised station-based monthly gridded rainfall data sourced from the Climate Research Unit (CRU) and monthly model outputs from the Fourth Edition of the Rossby Centre (RCA4) Regional Climate Model (RCM), which has scaled-down nine GCMs for Africa. Although the 9 Global Climate Models (GCMs) downscaled by the RCA4 model was not very good at simulating rainfall in Kenya, the ensemble of the 9 models performed better and could be used for further studies. The ensemble of the models was thus bias-corrected using the scaling method to reduce the error; lower values of bias and Normalized Root Mean Square Error (NRMSE) were recorded when compared to the uncorrected models. The bias-corrected ensemble was used to study the spatial and temporal behaviour of rainfall under baseline (1971 to 2000) and future RCP 4.5 and 8.5 scenarios (2021 to 2050). An insignificant trend was noted under the baseline condition during the March-May (MAM) and October-December (OND) rainfall seasons. A positive significant trend at 5% level was noted under RCP 4.5 and 8.5 scenarios in some stations during both MAM and OND seasons. The increase in rainfall was attributed to global warming due to increased anthropogenic emissions of greenhouse gases. Results on the spatial variability of rainfall indicate the spatial extent of rainfall will increase under both RCP 4.5 and RCP 8.5 scenario when compared to the baseline; the increase is higher under the RCP 8.5 scenario. Overall rainfall was found to be highly variable in space and time, there is a need to invest in the early dissemination of weather forecasts to help farmers adequately prepare in case of unfavorable weather. Concerning the expected increase in rainfall in the future, policymakers need to consider the results of this study while preparing mitigation strategies against the effects of changing rainfall patterns.

References

[1]  Adhikari, U., Nejadhashemi, A. P., & Woznicki, S. A. (2015). Climate Change and Eastern Africa: A Review of Impact on Major Crops. Food and Energy Security, 4, 110-132.
https://doi.org/10.1002/fes3.61
[2]  Akhter, J., Das, L., & Deb, A. (2017). CMIP5 Ensemble-Based Spatial Rainfall Projection over Homogeneous Zones of India. Climate Dynamics, 49, 1885-1916.
https://doi.org/10.1007/s00382-016-3409-8
[3]  Ayugi, B. et al. (2020). Quantile Mapping Bias Correction on Rossby Centre Regional Climate Models for Precipitation Analysis over Kenya, East Africa. Water (Switzerland), 12, 1-16.
https://doi.org/10.3390/w12030801
[4]  Ayugi, B. O., Wang, W., & Chepkemoi, D. (2016). Analysis of Spatial and Temporal Patterns of Rainfall Variations over Kenya. Environment and Earth Science, 6, 69-83.
[5]  Bobadoye, A., Ogara, W. O., & Onono, J. O. (2014). Comparative Analysis of Rainfall Trends in Different Sub Counties in Kajiado County Kenya. International Journal of Innovative Research and Studies, 12, 179-195.
[6]  Brands, S., Herrera, S., Fernández, J., & Gutiérrez, J. M. (2013). How Well Do CMIP5 Earth System Models Simulate Present Climate Conditions in Europe and Africa? A Performance Comparison for the Downscaling Community. Climate Dynamics, 41, 803-817.
https://doi.org/10.1007/s00382-013-1742-8
[7]  Clarke, L., Edmonds, J., Krey, V., Richels, R., Rose, S., & Tavoni, M. (2009). International Climate Policy Architectures: Overview of the EMF 22 International Scenarios. Energy Economics, 31, 64-81.
https://doi.org/10.1016/j.eneco.2009.10.013
[8]  Duhan, D., & Pandey, A. (2013). Statistical Analysis of Long Term Spatial and Temporal Trends of Precipitation during 1901-2002 at Madhya Pradesh, India. Atmospheric Research, 122, 136-149.
https://doi.org/10.1016/j.atmosres.2012.10.010
[9]  El-Beltagy, A., & Madkour, M. (2012). Impact of Climate Change on Arid Lands Agriculture. Agriculture & Food Security, 1, Article No. 3.
https://doi.org/10.1186/2048-7010-1-3
[10]  Endris, H. S. et al. (2013). Assessment of the Performance of CORDEX Regional Climate Models in Simulating East African Rainfall. Journal of Climate, 26, 8453-8475.
https://doi.org/10.1175/JCLI-D-12-00708.1
[11]  Endris, H. S., Lennard, C., Hewitson, B., Dosio, A., Nikulin, G., & Panitz, H. J. (2016). Teleconnection Responses in Multi-GCM Driven CORDEX RCMs over Eastern Africa. Climate Dynamics, 46, 2821-2846.
https://doi.org/10.1007/s00382-015-2734-7
[12]  Eriksen, S. H., Brown, K., & Kelly, P. M. (2005). The Dynamics of Vulnerability: Locating Coping Strategies in Kenya and Tanzania. Geographical Journal, 171, 287-305.
https://doi.org/10.1111/j.1475-4959.2005.00174.x
[13]  Ezéchiel, O., Eric, A. A., Josué, Z. E., Eliézer, B. I., & Amédée, C. (2016). Comparative Study of Seven Bias Correction Methods Applied to Three Regional Climate Models in Mekrou Catchment (Benin, West Africa). International Journal of Current Engineering and Technology, 6, 1831-1840.
[14]  Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated High-Resolution Grids of Monthly Climatic Observations—The CRU TS3.10 Dataset. International Journal of Climatology, 34, 623-642.
https://doi.org/10.1002/joc.3711
[15]  Herrero, M., Ringler, C., Steeg, J. Van De, Koo, J., & Notenbaert, A. (2010). Climate Variability and Climate Change and Their Impacts on Kenya’s Agricultural Sector. Nairobi.
[16]  Holzkämper, A., Calanca, P., & Fuhrer, J. (2011). Analyzing Climate Effects on Agriculture in Time and Space. Procedia Environmental Sciences, 3, 58-62.
https://doi.org/10.1016/j.proenv.2011.02.011
[17]  Indeje, M., Semazzi, F. H. M., & Ogallo, L. J. (2000). ENSO Signals in East African Rainfall Seasons. International Journal of Climatology, 20, 19-46.
https://doi.org/10.1002/(SICI)1097-0088(200001)20:1<19::AID-JOC449>3.0.CO;2-0
[18]  Indeje, M., Semazzi, F. H. M., Xie, L., & Ogallo, L. J. (2001). Mechanistic Model Simulations of the East African Climate Using NCAR Regional Climate Model: Influence of Large-Scale Orography on the Turkana Low-Level Jet. Journal of Climate, 14, 2710-2724.
https://doi.org/10.1175/1520-0442(2001)014<2710:MMSOTE>2.0.CO;2
[19]  Kendall, M. (1975). Rank Correlation Methods (4th ed.). London: Charles Griffin.
[20]  Kisembe, J., Favre, A., Dosio, A., Lennard, C., Sabiiti, G., & Nimusiima, A. (2019). Evaluation of Rainfall Simulations over Uganda in CORDEX Regional Climate Models. Theoretical and Applied Climatology, 137, 1117-1134.
https://doi.org/10.1007/s00704-018-2643-x
[21]  Liebmann, B., Hoerling, M. P., Funk, C., Bladé, I., Dole, R. M., Allured, D., Quan, X., Pegion, P., & Eischeid, J. K. (2014). Understanding Recent Eastern Horn of Africa Rainfall Variability and Change. Journal of Climate, 27, 8630-8645.
https://doi.org/10.1175/JCLI-D-13-00714.1
[22]  Liu, H., Chen, J., Zhang, X.-C., Xu, C.-Y., & Hui, Y. (2020). A Markov Chain-Based Bias Correction Method for Simulating the Temporal Sequence of Daily Precipitation. Atmosphere, 11, 1-17.
https://doi.org/10.3390/atmos11010109
[23]  Luhunga, P., Botai, J., & Kahimba, F. (2016). Evaluation of the Performance of CORDEX Regional Climate Models in Simulating Present Climate Conditions of Tanzania. Journal of Southern Hemisphere Earth System Science, 66, 32-54.
https://doi.org/10.22499/3.6601.005
[24]  Mann, H. B. (1945). Nonparametric Tests against Trend. Econometrica, 13, 245-259.
https://doi.org/10.2307/1907187
[25]  Mugo, J. W., Kariuki, P. C., & Musembi, D. K. (2016). Identification of Suitable Land for Green Gram Production Using GIS Based Analytical Hierarchy Process in Kitui County, Kenya. Journal of Remote Sensing & GIS, 5, 1-7.
https://doi.org/10.4172/2469-4134.1000170
[26]  Mukhala, E., Ngaina, J. N., & Maingi, N. W. (2017). Downscaled Climate Analysis on Historical, Current and Future Trends in the East African Community Region. Nairobi: Kenya Institute for Policy Research and Analysis (KIPPRA).
[27]  Mumo, L., Yu, J., & Ayugi, B. (2019). Evaluation of Spatiotemporal Variability of Rainfall over Kenya from 1979 to 2017. Journal of Atmospheric and Solar-Terrestrial Physics, 194, Article ID: 105097.
https://doi.org/10.1016/j.jastp.2019.105097
[28]  Mutayoba, E., & Kashaigili, J. J. (2017). Evaluation for the Performance of the CORDEX Regional Climate Models in Simulating Rainfall Characteristics over Mbarali River Catchment in the Rufiji Basin, Tanzania. Journal of Geoscience and Environment Protection, 5, 139-151.
https://doi.org/10.4236/gep.2017.54011
[29]  Ochieng, J., Kirimi, L., & Mathenge, M. (2016). Effects of Climate Variability and Change on Agricultural Production: The Case of Small Scale Farmers in Kenya. NJAS Wageningen Journal of Life Sciences, 77, 71-78.
https://doi.org/10.1016/j.njas.2016.03.005
[30]  Ogega, O. M., Oludhe, C., Ojwang, L., & Mbugua, J. (2016). Localized Knowledge for Local Climate Change Adaptation: A Focus on Coastal Smallholder Farmers in Kenya. International Journal of Agriculture, Environment and Biotechnology, 1, 67-88.
[31]  Okoola, R. E. (1999). Midtropospheric Circulation Patterns Associated with Extreme Dry and Wet Episodes over Equatorial Eastern Africa during the Northern Hemisphere Spring. Journal of Applied Meteorology, 38, 1161-1169.
https://doi.org/10.1175/1520-0450(1999)038<1161:MCPAWE>2.0.CO;2
[32]  Omeny, P. A., Okoola, R., Hendon, H., & Wheeler, M. (2008). East African Rainfall Variability Associated with the Madden-Julian Oscillation. Journal of Kenya Meteorological Society, 2, 105-114.
[33]  Omoyo, N. N., Wakhungu, J., & Oteng’i, S. (2015). Effects of Climate Variability on Maize Yield in the Arid and Semi Arid Lands of Lower Eastern Kenya. Agriculture and Food Security, 4, 1-13.
https://doi.org/10.1186/s40066-015-0028-2
[34]  Ongoma, V., & Chen, H. (2017). Temporal and Spatial Variability of Temperature and Precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129, 131-144.
https://doi.org/10.1007/s00703-016-0462-0
[35]  Ongoma, V., Chen, H., & Gao, C. (2019). Evaluation of CMIP5 Twentieth Century Rainfall Simulation over the Equatorial East Africa. Theoretical and Applied Climatology, 135, 893-910.
https://doi.org/10.1007/s00704-018-2392-x
[36]  Ongoma, V., Chen, H., & Omony, G. W. (2018). Variability of Extreme Weather Events over the Equatorial East Africa, a Case Study of Rainfall in Kenya and Uganda. Theoretical and Applied Climatology, 131, 295-308.
https://doi.org/10.1007/s00704-016-1973-9
[37]  Ongoma, V., Guirong, T., Ogwang, B., & Ngarukiyimana, J. (2015). Diagnosis of Seasonal Rainfall Variability over East Africa: A Case Study of 2010-2011 Drought over Kenya. Pakistan Journal of Meteorology, 11, 13-21.
[38]  Otieno, V. O., & Anyah, R. O. (2013). CMIP5 Simulated Climate Conditions of the Greater Horn of Africa (GHA). Part 1: Contemporary Climate. Climate Dynamics, 41, 2081-2097.
https://doi.org/10.1007/s00382-012-1549-z
[39]  Ouma, J. O., Olang, L. O., Ouma, G. O., Oludhe, C., Ogallo, L., & Artan, G. (2018). Magnitudes of Climate Variability and Changes over the Arid and Semi-Arid Lands of Kenya between 1961 and 2013 Period. American Journal of Climate Change, 7, 27-39.
https://doi.org/10.4236/ajcc.2018.71004
[40]  Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5-A Scenario of Comparatively High Greenhouse Gas Emissions. Climatic Change, 109, 33-57.
https://doi.org/10.1007/s10584-011-0149-y
[41]  Rowell, D. P., Booth, B. B. B., Nicholson, S. E., & Good, P. (2015). Reconciling Past and Future Rainfall Trends over East Africa. Journal of Climate, 28, 9768-9788.
https://doi.org/10.1175/JCLI-D-15-0140.1
[42]  Sagero, P. O., Shisanya, C. A., & Makokha, G. L. (2018). Investigation of Rainfall Variability over Kenya (1950-2012). Journal of Environmental and Agricultural Sciences, 14, 1-15.
[43]  Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389.
https://doi.org/10.1080/01621459.1968.10480934
[44]  Shisanya, C. A., Recha, C., & Anyamba, A. (2011). Rainfall Variability and Its Impact on Normalized Difference Vegetation Index in Arid and Semi-Arid Lands of Kenya. International Journal of Geosciences, 2, 36-47.
https://doi.org/10.4236/ijg.2011.21004
[45]  Taxak, A. K., Murumkar, A. R., & Arya, D. S. (2014). Long Term Spatial and Temporal Rainfall Trends and Homogeneity Analysis in Wainganga Basin, Central India. Weather and Climate Extremes, 4, 50-61.
https://doi.org/10.1016/j.wace.2014.04.005
[46]  Terink, W., Hurkmans, R. T. W. L., Torfs, P. J. J. F., & Uijlenhoet, R. (2010). Evaluation of a Bias Correction Method Applied to Downscaled Precipitation and Temperature Reanalysis Data for the Rhine Basin. Hydrology and Earth System Sciences, 14, 687-703.
https://doi.org/10.5194/hess-14-687-2010
[47]  Thornton, P. K. et al. (2008). Climate Change and Poverty in Africa: Mapping Hotspots of Vulnerability. African Journal of Agricultural and Resource Economics, 2, 24-44.
[48]  Tierney, J. E., Ummenhofer, C. C., & DeMenocal, P. B. (2015). Past and Future Rainfall in the Horn of Africa. Science Advances, 1, e1500682.
https://doi.org/10.1126/sciadv.1500682
[49]  Vigna, I., Bigi, V., Pezzoli, A., & Besana, A. (2020). Comparison and Bias-Correction of Satellite-Derived Precipitation Datasets at Local Level in Northern Kenya. Sustainability, 12, 2896.
https://doi.org/10.3390/su12072896
[50]  Wetterhall, F., Pappenberger, F., He, Y., Freer, J., & Cloke, H. L. (2012). Conditioning Model Output Statistics of Regional Climate Model Precipitation on Circulation Patterns. Nonlinear Processes in Geophysics, 19, 623-633.
https://doi.org/10.5194/npg-19-623-2012
[51]  Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S. J., Janetos, A., & Edmonds, J. (2009). Implications of Limiting CO2 Concentrations for Land Use and Energy. Science, 324, 1183-1186.
https://doi.org/10.1126/science.1168475
[52]  Worku, G., Teferi, E., Bantider, A., & Dile, Y. T. (2020). Statistical Bias Correction of Regional Climate Model Simulations for Climate Change Projection in the Jemma Sub-Basin, Upper Blue Nile Basin of Ethiopia. Theoretical and Applied Climatology, 139, 1569-1588.
https://doi.org/10.1007/s00704-019-03053-x
[53]  Yang, H., Grassini, P., Cassman, K. G., Aiken, R. M., & Coyne, P. I. (2017). Improvements to the Hybrid-Maize Model for Simulating Maize Yields in Harsh Rainfed Environments. Field Crops Research, 204, 180-190.
https://doi.org/10.1016/j.fcr.2017.01.019
[54]  Yang, W., Seager, R., Cane, M. A., & Lyon, B. (2015). The Rainfall Annual Cycle Bias over East Africa in CMIP5 Coupled Climate Models. Journal of Climate, 28, 9789-9802.
https://doi.org/10.1175/JCLI-D-15-0323.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133