|
- 2019
芳纶纤维和超高分子量聚乙烯纤维制备工程用纤维/水泥复合材料的适用性
|
Abstract:
研究了两种高强合成纤维在工程用纤维/水泥复合材料制备过程中的适用性,其中,芳纶纤维的表面为亲水性,超高分子量聚乙烯(UHMWPE)纤维的表面为憎水性。研究结果表明:工程用芳纶纤维/水泥复合材料拉伸破坏过程中无应变硬化能力且表现为单裂纹破坏现象;工程用UHMWPE纤维/水泥复合材料拉伸破坏过程中表现出良好的应变硬化能力和多裂纹开裂特性。因此,两种纤维相比,UHMWPE纤维适宜于工程用纤维/水泥复合材料的制备。随着水胶比的降低,工程用UHMWPE纤维/水泥复合材料抗拉强度增大,但应变硬化能力降低,因此,在制备工程用UHMWPE纤维/水泥复合材料的过程中,应协调纤维抗拉强度和基体与纤维之间界面过渡区的品质。 The applicabilities of two high-strength synthetic fibers for engineered fiber/cement composites were researched, with hydrophilic aramid fiber and hydrophobic ultra-high molecular weight polyethylene (UHMWPE) fiber. The results show that engineered aramid fiber/cement composites have no strain-hardening ability and present single crack failure pattern under uniaxial tensile load, and engineered UHMWPE fiber/cement composites show strain-hardening ability and multi cracking pattern. The UHMWPE fiber is more suitable for fiber/cement producing compared with aramid fiber. With the decrease of matrix water-to-binder ratio, the tensile strength of engineered UHMWPE fiber/cement composites increases but the strain-hardening ability decreases. It is suggested that when producing engineered UHMWPE fiber/cement composites, coordination of fiber tensile strength and fiber-matrix bond strength should be considered. 国家自然科学基金(51678343
[1] | WILLE K, NAAMAN A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials & Structures, 2011, 44(3):583-598. |
[2] | KAMAL A, KUNIEDA M, UEDA N, et al. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement & Concrete Composites, 2008, 30(10):863-871. |
[3] | RANADE R, LI V C, STULTS M D, et al. Composite properties of high-strength, high-ductility concrete[J]. Aci Materials Journal, 2013, 110(4):413-422. |
[4] | RANADE R. Advanced cementitious composites development for resilient and sustainable infrastructure[D]. Michigan:University of Michigan, 2014. |
[5] | CUROSU I, LIEBSCHER M, MECHTCHERINE V, et al. Tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers[J]. Cement & Concrete Research, 2017, 98:71-81. |
[6] | YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construction and Building Materials, 2018, 158:217-227. |
[7] | ZHANG Z G, ZHANG Q. Matrix tailoring of engineered cementitious composites (fiber/cement) with non-oil-coated, low tensile strength PVA fiber[J]. Construction and Building Materials, 2018, 161:420-431. |
[8] | WANG Z B, ZHANG J, WANG J H, et al. Tensile performance of polyvinyl alcohol-steel hybrid fiber reinforced cementitious composite with impact of water to binder ratio[J]. Journal of Composite Materials, 2014, 49(18):1-19. |
[9] | LI V C. From micromechanics to structural engineering:The design of cementitious composites for civil engineering applications[J]. Proceedings of the Japan Society of Civil Engineers, 1993, 10(471):1-12. |
[10] | LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites[J]. Materials & Structures, 1995, 28(10):586-595. |
[11] | YANG E H, YANG Y Z, LI V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. Aci Materials Journal, 2007, 104(6):620-628. |
[12] | YU K Q, WANG Y C, YU J T, et al. A strain-hardening cementitious composites with the tensile capacity up to 8%[J]. Construction & Building Materials, 2017, 137:410-419. |
[13] | 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. XU S L, LI H D. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6):45-60(in Chinese). |
[14] | SHI C J, MO Y L. High-performance construction mate-rials:Science and applications[M]. Singapore:World Scien-tific Publishing Co. Pte. Ltd., 2008. |
[15] | WANG S X, LI V C. Tailoring of pre-existing flaws in ECC matrix for saturated strain hardening[C]//Proceedings of FRAMCOS-5. Colorado:2004:1005-1012. |
[16] | 林建辉, 余江滔, LI V C. PVA纤维增强水泥基复合材料热处理后的力学性能[J]. 复合材料学报, 2016, 33(1):116-122. LIN J H, YU J T, LI V C. Mechanical properties of PVA fiber reinforced engineered cementitious composites after thermal treatment[J]. Acta Materiae Compositae Sinica, 2016, 33(1):116-122(in Chinese). |
[17] | LI V C, WU H C, CHAN Y W. Effect of plasma treatment of polyethylene fibers on interface and cementitious composite properties[J]. Journal of the American Ceramic Society, 2010, 79(3):700-704. |
[18] | 牛恒茂, 武文红, 邢永明, 等. 水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响[J]. 复合材料学报, 2015, 32(4):1067-1074. NIU H M, WU W H, XING Y M, et al. Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1067-1074(in Chinese). |
[19] | 张水, 李国忠, 陈娟, 等. 化学改性芳纶纤维增强水泥基复合材料的性能[J]. 复合材料学报, 2011, 28(3):109-114. ZHANG S, LI G Z, CHEN J, et al. Performance of chemical modified Kevlar fiber reinforced cement-based composites[J]. Acta Materiae Compositae Sinica, 2011, 28(3):109-114(in Chinese). |
[20] | LI V C. Damage tolerance of engineered cementitious composites[C]//Proc 9th ICF Conference on Fracture. Pergamon:Elsevier Science Ltd., 1997:619-629. |
[21] | 阚黎黎, 施惠生, 翟广飞, 等. 高延展性纤维增强水泥基复合材料自愈合行为[J]. 硅酸盐学报, 2011, 39(4):682-689. KAN L L, SHI H S, ZHAI G F, et al. Self-healing behavior of engineered cementitious composites materials[J]. Journal of the Chinese Ceramic Society, 2011, 39(4):682-689(in Chinese). |