全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
环境科学  2020 

基于深度学习的华东地区PM2.5浓度遥感反演

Keywords: PM2.5 Himawari数据 华东地区 深度学习 反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

PM2.5作为大气污染的主要来源,对人类身体健康有着极大的影响.本文提出基于深度学习模型的多要素联合PM2.5反演方法,以PM2.5浓度作为真值数据,引入Himawari气溶胶光学厚度(AOD)日数据产品与温度、相对湿度和气压等10个要素作为反演要素.为验证方法的有效性,采用华东地区2016~2018年的数据分季节开展实验,并与传统反演方法进行对比.结果表明,PM2.5浓度与AOD、降水、风速、高植被覆盖指数呈正相关关系,与矮植被覆盖指数呈负相关关系,与温度、湿度、气压以及DEM的相关性随季节的变化而改变;基于深层神经网络(DNN)反演的PM2.5精度高于传统的线性和非线性模型,各个季节R2均在0.5以上并且误差较小,其中秋季的反演效果最好R2为0.86,夏季为0.75,冬季为0.613,春季为0.566;模型的可视化结果显示,DNN模型的反演结果更接近地面监测站点插值的PM2.5浓度分布,分辨率更高且更精确

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133