全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity

DOI: 10.26599/TST.2018.9010144

Keywords: deep learning,fault diagnosis,feature extraction,clone selection strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

The extraction of rolling bearing fault features using traditional diagnostic methods is not sufficiently comprehensive and the features are often chosen subjectively and depend on human experience. In this paper, an improved deep convolutional process is used to extract a set of features adaptively. The hidden multi-layer feature of deep convolutional neural networks is also exploited to improve the extraction features. A deterministic detection of low-confidence samples is performed to ensure the reliability of the recognition results and to decrease the rate of false positives by evaluating the diagnosis of the deep convolutional neural network. To improve the efficiency of the continuous learning elements of the rolling bearing fault diagnosis, a clone learning strategy based on cloning and mutation operations is proposed. The experimental results show that the proposed deep convolutional neural network model can extract multiple rolling bearing fault features, improve classification and detection accuracy by reducing the false positive rate when diagnosing rolling bearing faults, and accelerate learning efficiency when using low-confidence rolling bearing fault samples

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133