全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2020 


DOI: 10.3866/PKU.WHXB201901051

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用简单的化学还原辅助水热法制备了一种新型SiC/Pt/CdS Z型异质结纳米棒,并将Pt纳米粒子锚定在SiC纳米棒与CdS纳米粒子的界面间,诱导电子-空穴对沿着Z型迁移路径进行转移。进行一系列的表征来分析该催化体系的结构,形貌和性能。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明,成功合成了具有较好晶体结构的光催化剂。通过透射电子显微镜证明,Pt纳米颗粒生长在SiC纳米棒和CdS纳米颗粒的界面间。UV-Vis漫反射光谱显示,所制备的Z-型异质结样品具有比原始CdS材料更宽的光吸收范围。光致发光光谱和瞬态光电流响应进一步证明具有最佳摩尔比的SiC/Pt/CdS纳米棒样品具有最高的电子-空穴对分离效率。通过控制SiC和CdS的摩尔比,可以有效地调节SiC/Pt纳米棒表面CdS的负载量,从而使得SiC/Pt/CdS纳米棒光催化剂达到最佳性能。当SiC : CdS = 5 : 1 (摩尔比)时可以达到最佳产氢性能,其最大析氢速率达到122.3 μmol?h?1。此外,从扫描电子显微镜、XRD和XPS分析可以看出,经过三次循环测试后,SiC/Pt/CdS光催化剂的形貌和晶体结构均基本保持不变,表明SiC/Pt/CdS纳米复合材料在可见光下产氢时具有稳定的结构。通过选择性光沉积技术在光反应中同时进行Au纳米粒子的光还原沉积和Mn3O4纳米粒子光氧化沉积以证明电子-空穴对的Z-型转移机制。实验结果表明,CdS导带上的电子主要参与光催化过程中的还原反应,SiC价带上的空穴更容易发生氧化反应,其中,SiC的导带上的电子将与CdS价带上的空穴复合形成Z型传输路径。因此,提出了在光催化产氢过程中SiC/Pt/CdS纳米棒催化体系可能的Z-型电荷迁移路径来解释产氢活性的提高。该研究为基于SiC纳米棒的Z-型光催化体系的合成提供了新的策略。基于以上分析,SiC/Pt/CdS纳米复合材料具有高效、廉价、易于制备、结构稳定等优势,具有突出的商业应用前景。
In this study, a novel silicon carbide/platinum/cadmium sulfide (SiC/Pt/CdS) Z-scheme heterojunction nanorod is constructed using a simple chemical reduction-assisted hydrothermal method, in which Pt nanoparticles are anchored at the interface of SiC nanorods and CdS nanoparticles to induce an electron-hole pair transfer along the Z-scheme transport path. Multiple characterization techniques are used to analyze the structure, morphology, and properties of these materials. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results show that the SiC/Pt/CdS materials with good crystal structure are successfully synthesized. Transmission electron microscopy reveals that Pt nanoparticles grow between the interfaces of SiC nanorods and CdS nanoparticles. UV-Vis diffuse reflectance spectroscopy shows that the as-prepared Z-scheme heterojunction samples have a wider light absorption range in comparison with pristine CdS materials. Photoluminescence spectroscopy and the transient photocurrent response further demonstrate that the SiC/Pt/CdS nanorod sample with an optimal molar ratio possesses the highest electron-hole pair separation efficiency. The loading amount of CdS on the surface of SiC/Pt nanorods is effectively adjusted by controlling the molar ratio of SiC and CdS to achieve the optimal performance of the SiC/Pt/CdS nanorod photocatalysts. The optimal H2 evolution capacity is achieved at SiC : CdS = 5 : 1 (molar ratio) and the maximum H2 evolution rate reaches a high value of 122.3 μmol·h?1. In addition, scanning electron microscopy, XRD, and XPS analyses show that the morphology and crystal structure of the SiC/Pt/CdS photocatalyst remain unchanged after three cycles of activity testing, indicating that the

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133