|
- 2016
MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent MannerDOI: 10.1016/j.neo.2016.01.006 Abstract: PURPOSE: Increased murine double minute 2 (MDM2) expression, independent of p53 status, is associated with increased cancer-specific mortality for men with prostate cancer treated with radiotherapy. We assessed MI-219, a small molecule inhibitor of MDM2 with improved pharmacokinetics over nutlin-3, for sensitization of prostate cancer cells to radiotherapy and androgen deprivation therapy, a standard treatment option for men with high-risk prostate cancer. EXPERIMENTAL DESIGN: The effect of MDM2 inhibition by MI-219 was assessed in vitro and in vivo with mouse xenograft models across multiple prostate cancer cell lines containing varying p53 functional status. RESULTS: MDM2 inhibition by MI-219 resulted in dose- and time-dependent p53 activation and decreased clonogenic cell survival after radiation in a p53-dependent manner. Mechanistically, radiosensitization following inhibition of MDM2 was largely the result of p53-dependent increases in apoptosis and DNA damage as evidenced by Annexin V flow cytometry and γ-H2AX foci immunofluorescence. Similarly, treatment with MI-219 enhanced response to antiandrogen therapy via a p53-dependent increase in apoptotic cell death. Lastly, triple therapy with radiation, androgen deprivation therapy, and MI-219 decreased xenograft tumor growth compared with any single- or double-agent treatment. CONCLUSION: MDM2 inhibition with MI-219 results in p53-dependent sensitization of prostate cancer cells to radiation, antiandrogen therapy, and the combination. These findings support MDM2 small molecule inhibitor therapy as a therapy intensification strategy to improve clinical outcomes in high-risk localized prostate cancer. TRANSLATIONAL RELEVANCE: The combination of radiotherapy and androgen deprivation therapy is a standard treatment option for men with high-risk prostate cancer. Despite improvements in outcomes when androgen deprivation therapy is added to radiation, men with high-risk prostate cancer have significant risk for disease recurrence, progression, and even death within the first 10 years following treatment. We demonstrate that treatment with MI-219 (an inhibitor of MDM2) results in prostate cancer cell sensitization to radiation and androgen deprivation therapy in vitro and in vivo. Triple therapy with MI-219, radiation, and androgen deprivation therapy dramatically decreased tumor growth compared with any single- or double-agent therapy. These findings provide evidence that inhibition of MDM2 is a viable means by which to enhance the efficacy of both radiation and androgen deprivation therapy and thereby
|