全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Existence and Positivity of Solutions for a Second-Order Boundary Value Problem with Integral Condition

DOI: 10.1155/2012/471975

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work is devoted to the study of uniqueness and existence of positive solutions for a second-order boundary value problem with integral condition. The arguments are based on Banach contraction principle, Leray Schauder nonlinear alternative, and Guo-Krasnosel’skii fixed point theorem in cone. Two examples are also given to illustrate the main results. 1. Introduction Boundary value problem with integral boundary conditions is a mathematical model for of various phenomena of physics, ecology, biology, chemistry, and so forth. Integral conditions come up when values of the function on the boundary are connected to values inside the domain or when direct measurements on the boundary are not possible. The presence of an integral term in the boundary condition leads to great difficulties. Our aim, in this work, is the study of existence, uniqueness, and positivity of solution for the following second-order boundary value problem: with boundary conditions of type where is a given function. Using the nonlinear alternative of Leray Schauder, we establish the existence of nontrivial solution of the BVP (1.1)-(1.2), under the condition where , to prove the uniqueness of solution, we apply Banach contraction principle, by using Guo-Krasnosel'skii fixed point theorem in cone we study the existence of positive solution. As applications, some examples to illustrate our results are given. Various types of boundary value problems with integral boundary conditions were studied by many authors using different methods see [1–9]. In [2] Benchohra et al. have studied (1.1) with the integral condition , the authors assumed that the function depends only on and and the condition (1.3) holds for , so our work is new and more general than [2]. Similar boundary value problems for third-order differential equations with one of the following conditions , , , or , , , were investigated by Zhao et al. in [6], they established the existence and nonexistence and the multiplicity of positive solutions in ordered Banach spaces basing on fixed point theory in cone. For more knowledge about the nonlocal boundary value problem, we refer to the references [10–17]. This paper is organized as follows. In Section 2, we give some notations, recall some concepts and preparation results. In the third Section, we give two main results, the first result based on Banach contraction principle and the second based nonlinear alternative of Leray-Schauder type. In Section 4, we treat the positivity of solutions with the help of Guo-Krasnosel'skii fixed point theorem in cone. Some examples are given

References

[1]  B. Ahmad, A. Alsaedi, and B. S. Alghamdi, “Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions,” Nonlinear Analysis, vol. 9, no. 4, pp. 1727–1740, 2008.
[2]  M. Benchohra, J. J. Nieto, and A. Ouahab, “Second-order boundary value problem with integral boundary conditions,” Boundary Value Problems, vol. 2011, Article ID 260309, 9 pages, 2011.
[3]  M. Feng, “Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions,” Applied Mathematics Letters, vol. 24, no. 8, pp. 1419–1427, 2011.
[4]  M. Feng, B. Du, and W. Ge, “Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian,” Nonlinear Analysis, vol. 70, no. 9, pp. 3119–3126, 2009.
[5]  P. Kang, Z. Wei, and J. Xu, “Positive solutions to fourth-order singular boundary value problems with integral boundary conditions in abstract spaces,” Applied Mathematics and Computation, vol. 206, no. 1, pp. 245–256, 2008.
[6]  J. Zhao, P. Wang, and W. Ge, “Existence and nonexistence of positive solutions for a class of third order BVP with integral boundary conditions in Banach spaces,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 1, pp. 402–413, 2011.
[7]  X. Zhang, M. Feng, and W. Ge, “Existence result of second-order differential equations with integral boundary conditions at resonance,” Journal of Mathematical Analysis and Applications, vol. 353, no. 1, pp. 311–319, 2009.
[8]  X. Zhang, M. Feng, and W. Ge, “Symmetric positive solutions for p-Laplacian fourth-order differential equations with integral boundary conditions,” Journal of Computational and Applied Mathematics, vol. 222, no. 2, pp. 561–573, 2008.
[9]  X. Zhang and W. Ge, “Positive solutions for a class of boundary-value problems with integral boundary conditions,” Computers & Mathematics with Applications, vol. 58, no. 2, pp. 203–215, 2009.
[10]  M. Feng and W. Ge, “Positive solutions for a class of m-point singular boundary value problems,” Mathematical and Computer Modelling, vol. 46, no. 3-4, pp. 375–383, 2007.
[11]  J. R. Graef, C. Qian, and B. Yang, “A three point boundary value problem for nonlinear fourth order differential equations,” Journal of Mathematical Analysis and Applications, vol. 287, no. 1, pp. 217–233, 2003.
[12]  A. Guezane-Lakoud and R. Khaldi, “Study of a third-order three-point boundary value problem,” in Proceedings of the International Conference on Mathematical Science (ICMS '10), vol. 1309 of AIP Conference Proceedings, pp. 329–335, Bolu, Turkey, November 2010.
[13]  A. Guezane-Lakoud and S. Kelaiaia, “Solvability of a nonlinear boundary value problem,” The Journal of Nonlinear Science and Applications, vol. 4, no. 4, pp. 247–261, 2011.
[14]  B. Liu, “Positive solutions of fourth-order two point boundary value problems,” Applied Mathematics and Computation, vol. 148, no. 2, pp. 407–420, 2004.
[15]  R. Ma, “A survey on nonlocal boundary value problems,” Applied Mathematics E-Notes, vol. 7, pp. 257–279, 2007.
[16]  Y. Sun and L. Liu, “Solvability for a nonlinear second-order three-point boundary value problem,” Journal of Mathematical Analysis and Applications, vol. 296, no. 1, pp. 265–275, 2004.
[17]  B. Yang, “Positive solutions for a fourth order boundary value problem,” Electronic Journal of Qualitative Theory of Differential Equations, no. 3, p. 17, 2005.
[18]  K. Deimling, Non-linear Functional Analysis, Springer, Berlin, Germany, 1985.
[19]  D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, San Diego, Calif, USA, 1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133