全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reactivity of Phenol Allylation Using Phase-Transfer Catalysis in Ion-Exchange Membrane Reactor

DOI: 10.1155/2012/196083

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigates the reactivity of phenol allylation using quaternary ammonium salt as a phase-transfer catalyst in three types of membrane reactors. Optimum reactivity and turnover of phenol allylation were obtained using a respond surface methodology. The contact angle, water content, and degree of crosslinkage were measured to understand the microenvironment in the ion exchange membrane. 1. Introduction Phase-transfer catalytic techniques have been used in manufacturing industry synthesis processes, such as insecticidal and chemical production [1–3]. However, a traditional liquid-liquid phase-transfer catalytic reaction has many disadvantages, because separating the catalyst and purifying the reaction system are difficult. Hence, the liquid-solid-liquid phase-transfer catalyst technique was developed. Although this type of catalyst is easy to use and recover from a solution, the reactant pore diffusion in the catalyst affects the reaction and decreases the reaction rate. A catalyst immobilized in an ion exchange membrane could solve these problems. When a catalyst is immobilized in an inert membrane pore, the catalytic reactivity and separation functions are engineered in a complex system. The membrane technique offers advantages of (i) separating the catalyst from the reaction solution, (ii) maintaining phase separation to minimize the potential of emulsions forming, and (iii) a high surface area per unit volume of the reactor. Furthermore, Zaspalis et al. [4] reported that a reaction using a membrane catalyst could be 10 times more active than a pellet catalyst reaction. Yadav and Mehta [5] presented a theoretical and experimental analysis of capsule membrane phase-transfer catalysis for the alkaline hydrolysis of benzyl chloride to benzyl alcohol. Okahata and Ariga [6] examined the reaction of sodium azide with benzyl bromide in the presence of a capsule membrane with pendant quaternary ammonium groups and polyethylene glycol groups on the outside. A capsule membrane is unsuited to mass industrial production because of the inconvenience of working with capsules. Various methods of preparing ion-exchange membranes for different purposes have been proposed and practiced by industry. One of these methods is copolymerizing divinylbenzene and other vinyl monomers (e.g., styrene, chloromethylstyrene, and vinylpyridine) into a membranous copolymer using the paste method and then introducing ion-exchange groups into the copolymer [7–9]. The polymer solution (which contains polymers with ion-exchange groups and other polymers) is then cast on a flat

References

[1]  V. V. Dehmlow and S. S. Dehmlow, Phase Transfer Catalysis, Chemie, Weinheim, Germany, 1993.
[2]  C. M. Starks, C. L. Liotta, and M. Halpern, Phase-Transfer Catalysis, Fundamentals, Applications, and Industrial Perspectives, Chapman & Hall, New York, NY, USA, 1994.
[3]  H. M. Yang and H. S. Wu, “Interfacial mechanism and kinetics of phase-transfer catalysis,” in Interfacial Catalysis, A. G. Volkov, Ed., vol. 285, chapter 11, Marcel Dekker, 2003.
[4]  V. T. Zaspalis, W. Van Praag, K. Keizer, J. G. Van Ommen, J. R. H. Ross, and A. J. Burggraaf, “Reactions of methanol over catalytically active alumina membranes,” Applied Catalysis, vol. 74, no. 2, pp. 205–222, 1991.
[5]  G. D. Yadav and P. H. Mehta, “Theoretical and experimental analysis of capsule membrane phase transfer catalysis: selective alkaline hydrolysis of benzyl chloride to benzyl alcohol,” Catalysis Letters, vol. 21, no. 3-4, pp. 391–403, 1993.
[6]  Y. Okahata and K. J. Ariga, “Functional capsule membranes. 27. A new type of phase-transfer catalysts (PTC). Reaction of substrates in the inner organic phase with the outer aqueous anions catalyzed by PTC grafted on the capsule,” Journal of Organic Chemistry, vol. 51, p. 5064, 1986.
[7]  Y. Mizutani, R. Yamane, H. Ihara, and H. Motomura, “Studies of Ion Exchange Membraness. XVI. The preparation of ion exchange membranes by the “Paste Method”,” Bulletin of The Chemical Society of Japan, pp. 361–366, 1963.
[8]  Y. Mizutani, R. Yamane, and H. Motomura, “Studies of Ion Exchange Membranes. XXII. Semicontinuous preparation of ion exchange membrane by the paste method,” Bulletin of The Chemical Society of Japan, pp. 689–694, 1964.
[9]  Y. Mizutani, “Studies of Ion Exchange Membraness. The tetrahydrofuran extraction of the ion-exchange membrane and its base membrane prepared by the “Paste Method“,” Bulletin of The Chemical Society of Japan, vol. 42, no. 1969, pp. 2459–2463, 1969.
[10]  H. P. Gregor, H. Jacobson, R. C. Shair, and D. M. Wetstone, “Interpolymer ion-selective membranes. I. Preparation and characterization of polystyrenesulfonic acid-dynel membranes,” Journal of Physical Chemistry, vol. 61, p. 141, 1957.
[11]  P. Zschocke and D. Quellmatz, “Novel ion exchange membranes based on an aromatic polyethersulfone,” Journal of Membrane Science, vol. 22, pp. 325–332, 1985.
[12]  S. Wu and M. H. Lo, “Modeling and kinetics of allylation of phenol in a triphase-catalytic membrane reactor,” American Institute of Chemical Engineers, vol. 51, pp. 960–970, 2005.
[13]  H. S. Wu and Y. K. Wu, “Preliminary study on the characterization and preparation of quaternary ammonium membrane,” Industrial & Engineering Chemistry Research, vol. 44, p. 1757, 2005.
[14]  H. S. Wu and C. S. Wang, “Liquid—solid—liquid phase-transfer catalysis in sequential phosphazene reaction: kinetic investigation and reactor design,” Chemical Engineering Science, vol. 58, no. 15, pp. 3523–3534, 2003.
[15]  H. S. Wu, “Catalytic activity and kinetics of liquid—solid—liquid phase-transfer catalysts,” in New Developments in Catalysis Research, L. P. Bevy, Ed., chapter 1, pp. 1–38, Nova Science Publishers, 2005.
[16]  G. E. P. Box and J. S. Hunter, “Multi-factor experimental designs for exploring response surfaces,” Annals of Mathematical Statistics, vol. 28, p. 195, 1957.
[17]  G. E. P. Box and K. B. J. R. Wilson, “On the experimental attainment of optimum conditions,” Journal of the Royal Statistical Society B, vol. 13, p. 1, 1951.
[18]  J. J. Cilliers, R. C. Austin, and J. P. Tucker, “An evaluation of formal experimental design procedures for hydrocyclone modelling,” in Proceeding of the 4th International Conference of Hydrocyclones, L. Svarovsky and M. T. Thew, Ed., pp. 31–49, Kluwer Academic Publishers, Southampton, UK, 1992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133