Absorption of pure oxygen into aqueous emulsions of n-heptane, n-dodecane, and n-hexadecane, respectively, has been studied at 0 to 100% oil volume fraction in a stirred tank at the stirring speed of 1000?min?1. The volumetric mass transfer coefficient, , was evaluated from the pressure decrease under isochoric and isothermal (298.2?K) conditions. The O/W emulsions of both n-dodecane and n-hexadecane show a maximum at 1-2% oil fraction as reported in several previous studies. Much stronger effects never reported before were observed at high oil fractions. Particularly, all n-heptane emulsions showed higher mass-transfer coefficients than both of the pure phases. The increase is by upto a factor of 38 as compared to pure water at 50% n-heptane. The effect is tentatively interpreted by oil spreading on the bubble surface enabled by a high spreading coefficient. In W/O emulsions of n-heptane and n-dodecane increases with the dispersed water volume fraction; the reason for this surprising trend is not clear. 1. Introduction Oxygen absorption into emulsions is encountered, for example, in fermentations with an oil as the carbon source. Most studies have been carried out at low oil volume fractions typical for this application [1, 2]. Literature data on the effect of n-alkane addition on the volumetric mass transfer coefficient for oxygen are illustrated in Figure 1. The value has been reported to increase [3, 4], decrease [5, 6], or remain unaffected [7] compared to the one in water. Da Silva et al. [8] reported that 1% n-hexadecane or n-dodecane increased in a stirred tank by factors of 1.68 and 1.36, respectively; Kundu et al. [3] found that addition of 1% n-dodecane or n-heptane could enhance oxygen transfer in a bubble column up to fourfold; Jia et al. [9] also found a fourfold increase by 2% soybean oil in an air-lift reactor. Among other factors, the oil spreading coefficient S (1) has been used to explain the differences between the oils as follows: The values of spreading coefficients S reported in the literature for the three n-alkanes used in this study, n-heptane, n-dodecane, and n-hexadecane, differ considerably (Table 1). In the present work, absorption of pure oxygen into aqueous emulsions of these n-alkanes has been studied in the full range of oil volume fraction (0 to 100%) with a barometric technique. The main advantage of the pressure technique is that it can give information on both and oxygen solubility. At high-oil volume fractions, not considered in the previous studies, the high oxygen solubilities in the oils (high driving force)
References
[1]
K. G. Clarke and L. D. C. Correia, “Oxygen transfer in hydrocarbon-aqueous dispersions and its applicability to alkane bioprocesses: a review,” Biochemical Engineering Journal, vol. 39, no. 3, pp. 405–429, 2008.
[2]
E. Dumont and H. Delmas, “Mass transfer enhancement of gas absorption in oil-in-water systems: a review,” Chemical Engineering and Processing, vol. 42, no. 6, pp. 419–438, 2003.
[3]
A. Kundu, E. Dumont, A. M. Duquenne, and H. Delmas, “Mass transfer characteristics in gas-liquid-liquid system,” Canadian Journal of Chemical Engineering, vol. 81, no. 3-4, pp. 640–646, 2003.
[4]
T. L. Da Silva, A. Mendes, R. L. Mendes et al., “Effect of n-dodecane on Crypthecodinium cohnii fermentations and DHA production,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 6, pp. 408–416, 2006.
[5]
D. R. Nielsen, A. J. Daugulis, and P. J. McLellan, “A novel method of simulating oxygen mass transfer in two-phase partitioning bioreactors,” Biotechnology and Bioengineering, vol. 83, no. 6, pp. 735–742, 2003.
[6]
F. Yoshida, T. Yamane, and Y. Miyamoto, “Oxygen absorption into oil-in-water emulsions: a study on hydrocarbon fermentors,” Industrial and Engineering Chemistry, vol. 9, no. 4, pp. 570–577, 1970.
[7]
E. Dumont, Y. Andrès, and P. Le Cloirec, “Effect of organic solvents on oxygen mass transfer in multiphase systems: application to bioreactors in environmental protection,” Biochemical Engineering Journal, vol. 30, no. 3, pp. 245–252, 2006.
[8]
T. L. da Silva, V. Calado, N. Silva et al., “Effects of hydrocarbon additions on gas-liquid mass transfer coefficients in biphasic bioreactors,” Biotechnology and Bioprocess Engineering, vol. 11, no. 3, pp. 245–250, 2006.
[9]
S. Jia, G. Chen, P. Kahar, D. B. Choi, and M. Okabe, “Effect of soybean oil on oxygen transfer in the production of tetracycline with an airlift bioreactor,” Journal of Bioscience and Bioengineering, vol. 87, no. 6, pp. 825–827, 1999.
[10]
T. H. Ngo and A. Schumpe, “Absorption of CO2 into alkane/water emulsions in a stirred tank,” Journal of Chemical Engineering of Japan, vol. 45, 2012.
[11]
H. J. O. Pinho and S. S. Alves, “Effect of spreading coefficient on gas-liquid mass transfer in gas-liquid-liquid dispersions in a stirred tank,” Chemical Engineering Communications, vol. 197, no. 12, pp. 1515–1526, 2010.
[12]
I. T. M. Hassan and C. W. Robinson, “Oxygen transfer in mechanically agitated aqueous systems containing dispersed hydrocarbon,” Biotechnology and Bioengineering, vol. 19, no. 5, pp. 661–682, 1977.
[13]
R. C. G. Oliveira, G. Gonzalez, and J. F. Oliveira, “Interfacial studies on dissolved gas flotation of oil droplets for water purification,” Colloids and Surfaces A, vol. 154, no. 1-2, pp. 127–135, 1999.
[14]
D. Z. Wei and H. Liu, “Promotion of L-asparaginase production by using n-dodecane,” Biotechnology Techniques, vol. 12, no. 2, pp. 129–131, 1998.
[15]
J. L. Rols, J. S. Condoret, C. Fonade, and G. Goma, “Mechanism of enhanced oxygen transfer in fermentation using emulsified oxygen-vectors,” Biotechnology and Bioengineering, vol. 35, no. 4, pp. 427–435, 1990.
[16]
R. S. Albal, Y. T. Shah, A. Schumpe, and N. L. Carr, “Mass transfer in multiphase agitated contactors,” Chemical Engineering Journal, vol. 27, no. 2, pp. 61–80, 1983.
[17]
W. J. Bruining, G. E. H. Joosten, A. A. C. M. Beenackers, and H. Hofman, “Enhancement of gas-liquid mass transfer by a dispersed second liquid phae,” Chemical Engineering Science, vol. 41, no. 7, pp. 1873–1877, 1986.
[18]
A. H. G. Cents, D. W. F. Brilman, and G. F. Versteeg, “Gas absorption in an agitated gas-liquid-liquid system,” Chemical Engineering Science, vol. 56, no. 3, pp. 1075–1083, 2001.
[19]
J. L. Rols, J. S. Condoret, C. Fonade, and G. Goma, “Modeling of oxygen transfer in water through emulsified organic liquids,” Chemical Engineering Science, vol. 46, no. 7, pp. 1869–1873, 1991.
[20]
D. R. Lide and H. V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data, CRC Press, Boca Raton, Fla, USA, 1994.
[21]
K. H. Ngan, K. Ioannou, L. D. Rhyne, W. Wang, and P. Angeli, “A methodology for predicting phase inversion during liquid-liquid dispersed pipeline flow,” Chemical Engineering Research and Design, vol. 87, no. 3, pp. 318–324, 2009.
[22]
S. Maa?, S. Wollny, A. Voigt, and M. Kraume, “Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions,” Experiments in Fluids, vol. 50, no. 2, pp. 259–269, 2011.
[23]
S. Maa?, J. Rojahn R. H?nsch, and M. Kraume, “Automated drop detection using image analysis for online particle size monitoring in multiphase systems,” Computers & Chemical Engineering, vol. 87, pp. 27–37, 2012.