全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Use of Iron (II) Salts and Complexes for the Production of Soil Amendments from Organic Solid Wastes

DOI: 10.1155/2012/701728

Full-Text   Cite this paper   Add to My Lib

Abstract:

A method to obtain rapidly stabilized composts for crops from solid organic wastes is evaluated. Here we used a laboratory scale reaction chamber where solid waste treatment was performed under strictly controlled temperature and pressure conditions. The row organic waste was mixed with acid solutions containing iron (II) ions either in the fully hydrated form or in the form of complexes with the diethylentriaminopentaacetic acid. Data from elemental analysis distribution and GC/MS analysis of the polar and non polar dissolved organic matter, clearly showed that Fe(II) ions significantly enhance organic substrate oxidation of the initial solid waste, compared to a material obtained without the addition of the Fe(II) ions to the raw organic matrix. These results suggest that Fe(II) ions might be involved in a catalytic oxidation pathway that would be activated under the experimental conditions used. The extent of the oxidation process was evaluated by the value of the C/N ratio and, qualitatively, by the molecular composition of the dissolved organic matter. After about 6 hours of incubation, dark-brown and dry organic matrices were obtained with C/N ratio as low as 12 and a high degree of oxidative decomposition into low-molecular-weight compounds at high oxidation state. 1. Introduction Solid organic waste managing, treatment, and disposal is one of the most important worldwide environmental problems. Among the various options (minimization, recycling, sanitary landfilling, incineration, and composting) composting is one of the most interesting and economically feasible. This is especially true because the produced compost can be used for soil amendment or fertilizer when the organic waste does not contain pollutants such as heavy metals. The composting process is defined as “the biological decomposition of biodegradable solid waste under controlled predominantly aerobic conditions to a state that is sufficiently stable for nuisance-free storage and handling and is satisfactorily matured for safe use in agriculture” [1]. In this process, the raw organic material is progressively broken down by a succession of populations of living organism at different stages of the decomposition process (mesophilic, thermophilic, and maturation stages) [2]. Micro- and macroflora are key process factors controlling the composting process. Other key factors are temperature, pH, moisture content, and aeration as well as the chemical and physical availability of the nutrients in the organic waste, respectively, determined by the molecules vulnerability to microbes attack

References

[1]  UNEP, “Composting,” in Solid Waste Management, United Nation Environmental Program, Ed., vol. 1, part 2, chapter 8, pp. 198–235, 2005.
[2]  M. de Bertoldi, G. Vallini, and A. Pera, “The biology of composting: a review,” Waste Management and Research, vol. 1, no. 2, pp. 157–176, 1983.
[3]  M. Kosaku, “Method of manufacturing full-ripe fertilizer using organic waste,” JP2003055078 (A), 2003.
[4]  Z. Xianjin, X. Weijian, and S. Jinghu, Production of a natural catalyst by drying of natural organic waste, CN2003-01-08.
[5]  L. M. Hyoung, “Method for producing organic fertilizer using organic wastes and inorganic materials and devices used therefor,” KR20010091641 (A), 2001.
[6]  T. Hitoshi, “Chemical-physical process for fertilizer production from organic waste and production plant,” JP5295376, 1993.
[7]  H. J. H. Fenton, “Oxidation of tartaric acid in presence of iron,” Journal of the Chemical Society, Transactions, vol. 65, pp. 899–910, 1894.
[8]  H. B. Dunford, “Oxidations of iron(II)/(III) by hydrogen peroxide: from aquo to enzyme,” Coordination Chemistry Reviews, vol. 233-234, pp. 311–318, 2002.
[9]  K. Barbusiński, “Fenton reaction. Controversy concerning the chemistry,” Ecological Chemistry and Engineering S, vol. 16, no. 3, pp. 347–358, 2009.
[10]  C. P. Huang, C. Dong, and Z. Tang, “Advanced chemical oxidation: its present role and potential future in hazardous waste treatment,” Waste Management, vol. 13, no. 5–7, pp. 361–377, 1993.
[11]  E. Neyens and J. Baeyens, “A review of classic Fenton's peroxidation as an advanced oxidation technique,” Journal of Hazardous Materials, vol. 98, no. 1–3, pp. 33–50, 2003.
[12]  I. Casero, D. Sicilia, S. Rubio, and D. Pérez-Bendito, “Chemical degradation of aromatic amines by Fenton's reagent,” Water Research, vol. 31, no. 8, pp. 1985–1995, 1997.
[13]  W. G. Kuo, “Decolorizing dye wastewater with Fenton's reagent,” Water Research, vol. 26, no. 7, pp. 881–886, 1992.
[14]  S. Nam, V. Renganathan, and P. G. Tratnyek, “Substituent effects on azo dye oxidation by the -EDTA-H2O2 system,” Chemosphere, vol. 45, no. 1, pp. 59–65, 2001.
[15]  K. Barbusiński, “The modified Fenton process for decolorization of dye wastewater,” Polish Journal of Environmental Studies, vol. 14, no. 3, pp. 281–285, 2005.
[16]  P. L. Huston and J. J. Pignatello, “Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction,” Water Research, vol. 33, no. 5, pp. 1238–1246, 1999.
[17]  K. Barbusiński and K. Filipek, “Use of Fenton's reagent for removal of pesticides from industrial wastewater,” Polish Journal of Environmental Studies, vol. 10, no. 4, pp. 207–212, 2001.
[18]  K. Ikehata and M. G. El-Din, “Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review,” Journal of Environmental Engineering and Science, vol. 5, no. 2, pp. 81–135, 2006.
[19]  S. H. Lin, C. M. Lin, and H. G. Leu, “Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation,” Water Research, vol. 33, no. 7, pp. 1735–1741, 1999.
[20]  M. Kitis, C. D. Adams, and G. T. Daigger, “The effects of Fenton's reagent pretreatement on the biodegradability of nonionic surfactants,” Water Research, vol. 33, no. 11, pp. 2561–2568, 1999.
[21]  J. Prousek, “Fenton chemistry in biology and medicine,” Pure and Applied Chemistry, vol. 79, no. 12, pp. 2325–2338, 2007.
[22]  S. H. Bossmann, E. Oliveros, S. G?b et al., “New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions,” Journal of Physical Chemistry A, vol. 102, no. 28, pp. 5542–5550, 1998.
[23]  M. D. Paciolla, G. Davies, and S. A. Jansen, “Generation of hydroxyl radicals from metal-loaded humic acids,” Environmental Science and Technology, vol. 33, no. 11, pp. 1814–1818, 1999.
[24]  M. P. Bernal, C. Paredes, M. A. Sanchez-Monedero, and J. Cegarra, “Maturity and stability parameters of composts prepared with a wide range of organic wastes,” Bioresource Technology, vol. 63, no. 1, pp. 91–99, 1998.
[25]  J. Vandegaer, S. Chaberek, and A. E. Frost, “Iron chelates of diethylenetriaminepentaacetic acid,” Journal of Inorganic and Nuclear Chemistry, vol. 11, no. 3, pp. 210–221, 1959.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133