全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于结构和属性的图聚类算法研究

Keywords: 图聚类,k-means算法,相似度,结构,属性

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 图是一种有效、简单而系统的建模方式,如何有效、准确的进行图聚类是目前的一个研究热点.本文提出一种基于结构和属性的图聚类算法,首先,针对传统kmeans算法对初始聚类中心敏感的问题,提出一种基于相似度的初始聚类中心算法,对结构—属性相似度矩阵的行进行求和,按照从大到小顺序提取前K个不重叠值所对应的顶点作为初始聚类中心;其次,提出一种动态属性权重确定方法,根据上一次迭代后的聚类结果,考虑属性的不同取值数量以及属性值的分布情况,确定下一轮聚类时顶点属性的权重;再次,利用动态属性权重,计算节点间的属性—结构相似度,进行kmeans聚类;最后,通过实验验证本文算法的正确性和有效性

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133