The following study is aimed at valorizing an important part of waste
from building demolition, particularly concrete as a source of aggregates for
their usage in new hydraulic concrete
formulation. The experimental study mainly consisted of physical
characterization of natural and recycled aggregates respectively and the impact
of the latter on some properties of the new formulated concrete, actually their
respective consistencies for fresh concrete and mechanical strength for the
hardened one. The outcome of the study shows that the recycled aggregates are more
heterogeneous and have a high capacity of water absorption, but which still
respects the current standards of concrete.The
need for additional water has been observed for recycled aggregates-based
concrete so as to have the same workability. About the compressive strength,
mechanical properties obviously show that, at 28 days from setting up,
concretes from recycled aggregates can reach compressive strengths range
between 20 and 25 MPawithout any sophisticated technology. So, these results show that we can
efficiently contribute to the protection of environment by valorizing waste
from concrete-based building demolition on the one hand; and the preservation
of natural reserve on the other. And both advantages contribute to sustainable
development overall goals.
References
[1]
Charef, A. (2007) La problématique des granulats au Maroc. Push-Button Publishing.
[2]
Fraj, A.B. and Idir, R. (2017) Concrete Based on Recycled Aggregates-Recycling and Environmental Analysis: A Case Study of Paris’ Region. Construction and Bulding Materials, 157, 952-964. https://doi.org/10.1016/j.conbuildmat.2017.09.059
[3]
Wirquin, E., Hadjieva-Zaharieva, R. and Buyle-Bodin, F. (2000) Utilisation de l'absorption d’eau des bétons comme critères de leur durabilité: Application aux bétons de granulats recyclés. Materials and Structures, 33, 403-408.
https://doi.org/10.1007/BF02479650
[4]
Courard, L., Michel, F. and Delhez, P. (2010) Use of Concrete Road Recycled Aggregates for Roller Compacted Concrete. Construction Building Material, 24, 390-395.
https://doi.org/10.1016/j.conbuildmat.2009.08.040
[5]
Buyle-Bodin, F. and Zaharieva, R.H. (2002) Influence of Industrially Produced Recycled Aggregates on Flow Properties of Concrete. Materials and Structures, 35, 504-509. https://doi.org/10.1007/BF02483138
[6]
Hussain, H. and Levacher, D. (2003) Recyclage de béton de démolition dans la fabrication des nouveaux bétons. Rencontres Universitaires de Génie Civil, La Rochelle, France.
[7]
NF EN 933-1 (2012) Essais pour déterminer les caractéristiques géométriques des granulats, partie 1: Détermination de la granularité-analyse granulométrique par tamisage. AFNOR, Paris.
[8]
NF EN 933-8 (1999) Essais pour déterminer les caractéristiques géometriques des granulats Partie 8; Evaluation des fines-Equivalent de sable. AFNOR, Paris.
[9]
NF P 18-555 (1990) Granulats: Mesures des masses volumiques, de la porosité, du coefficient d’absorption et de la teneur en eau du sable. AFNOR, Paris.
[10]
NF P 18-451 (1990) Béton frais: Essai d’affaissement au cône. AFNOR, Paris.
[11]
NF P 18-406 (1981) Essai de compression des éprouvettes en béton durci. AFNOR, Paris.
[12]
Dreux, G. and Festa, J. (1998) Nouveau guide du béton et ses constituants. Edition Eyrolles, 8eme édition, 409 p.