Polycrystalline Silicon Solar Cell p-n Junction Capacitance Behavior Modelling under an Integrated External Electrical Field Source in Solar Cell System
The
state of the p-n junction is very important to explain the performances of a solar cell. Some works give the influence of the electric field on the
junction capacitance. However, these works do not relate the quality of the p-n junction under the electic field. The present manuscript is about a
theoretical modelling of the p-n junction capacitance behavior of the polycrystalline silicon solar cell
under an integration of the external electrical field source. An external
electrical source is integrated in a solar cell system. The electronic carriers
charge generated in the solar cell crossed
References
[1]
Green Martin, A., Ewan, D., Dean, H.L., Jochen, H., Masahiro, Y. and Anita, W.H. (2019) Solar Cell Efficiency Tables (v54). Progress in Photovoltaics: Research and Applications, 27, 565-575. https://doi.org/10.1002/pip.3171
[2]
Ouedraogo, A., Guengane, H., Imbga, K. and Bathiebo, D.J. (2019) Analysis of External Load Resistance Influence on the Single-Crystalline Silicon Photovoltaic Module (pv). Journal of Fundamental and Applied Sciences, 11, 663-674.
[3]
Ouedraogo, A., Bazyomo, S.D.Y.B., Ouedraogo, S., Razakou, A. and Bathiebo, D.J. (2018) Improvement of the Silicon Solar Cell Performance by Integration of an Electric Field Source in the Solar Cell or Solar Module System. Smart Grid and Renewable Energy, 9, 285-298. https://doi.org/10.4236/sgre.2018.912018
[4]
Ouedraogo, A., Maurice Ky, T.S., Compaore, A. and Bathiebo, D.J. (2019) Improvement in the Silicon Solar Cell Performance by Integration of the Electric Field Source in the Solar Cell under Sunlight Illumination. Arabian Journal for Science and Engineering, 44, 6651-6657. https://doi.org/10.1007/s13369-019-03906-7
[5]
Zerbo, I., Zoungrana, M., Oudraogo, A. and Bathiebo, D.J. (2017) Effect of Junction Quality on the Performance of a Silicon Solar Cell. Journal of Fundamental and Applied Sciences, 9, 1012-1026. https://doi.org/10.4314/jfas.v9i2.26
[6]
Barro, F.I., Sane, M. and Zouma, B. (2015) On the Capacitance of Crystalline Silicon Solar Cells in Steady State. Turkish Journal of Physics, 39, 122-127.
https://doi.org/10.3906/fiz-1408-3
[7]
Ouedraogo, A., Mogmenga, L., Bado, N., Ky, T.S.M. and Bathiebo, D.J. (2019) Analysis of the Single-Crystalline Silicon Photovoltaic (pv) Module Performances under Low γ-Radiation from Radioactive Source. Silicon.
https://doi.org/10.1007/s12633-019-00282-7
[8]
Ouedraogo, A. (2017) Modelisation 3D de l’influence des ondes radios sur une photopile au silicium polycristallin sous clairement monochromatique. PhD thesis, UniversitéOuaga I Pr Joseph KI-ZERBO.
[9]
Gokhan, S. and Ferhat, K. (2018) Performance of Capacitance Efficiency on the Extension Space Charge Region of Silicon Solar Cell with Garin Size. Silicon, 11, 383-391. https://doi.org/10.1007/s12633-018-9896-y
[10]
Fossum, J.G., Burgess, E.L. and Lindholm, F.A. (1978) Silicon Solar Cell Designs Based on Physical Behavior in Concentrated Sunlight. Solid-State Electronics, 21, 729-737. https://doi.org/10.1016/0038-1101(78)90005-9
[11]
Moliton, A. (2011) Electronique et optolectronique organiques. Hermes Science Publications, France.
[12]
Mathieu, H. and Fanet, H. (2009) Physique des semiconducteurs et des composants’electroniques. Dunod, 6 Edition.
[13]
Equer, B. (1991) Physique et technologie de la conversion photovoltaque: Energie Solaire Photovoltaque, Volume 1. UNESCO, Ecole d’été: Electricitésolaire pour les zones Rurales et isoles.
[14]
Billy, N., Desbois, J., Duval, M., Elias, M., Monceau, P., Plaszczynski, A. and Toulmonde, M. (2004) CAPES de Sciences physiques, Tome 1-Physique cours et exercices. Berlin.
[15]
Mbodji, S., Mbow, B., Barro, F.I. and Sissoko, G. (2011) A 3d Model for Thickness and Diffusion Capacitance of Emitter-Base Junction Determination in a Bifacial Polycrystalline Solar Cell Under Real Operating Condition. Turkish Journal of Physics, 35, 281-291.
[16]
Mbodji, S., Mbow, B., Barro, F.I. and Sissoko, G. (2010) A 3D Model for Thickness and Diffusion Capacitance of Emitter-Base Junction in a Bifacial Poly-Crystalline Solar Cell. Global Journal Of Pure And Applied Sciences, 16, 469-477.
[17]
Mbodji, S. (2009) Etude en modélisation de éllargissement de la zone de charge d’espace et de la capacité de transition dune photopile bifaciale au silicium polycristallin sous éclairement monochromatique constant. Thèsed’état, Université Cheikh Anta DIOP de Dakar (UCAD).
[18]
Taylor, S.J., Yamaguchi, M., Yamaguchi, T., Watanabe, S., Ando, K., Matsuda, S., Hisamatsu, T. and Kim, S.I. (1998) Comparison of the Effects of Electron and Proton Irradiation on n+-p-p+ Silicon Diodes. Journal of Applied Physics, 83, 4620-4627.
https://doi.org/10.1063/1.367246
[19]
Würfel, P. (2005) Physics of Solar Cells. Die Deutsche Bibliothek, Berlin, Wiley-VCH Verlag GmbH and Co. KGaA Edition.
[20]
Liou, J.J., Fredrick, A., Lindholm, F. and Park, J.S. (1987) Forward-Voltage Capacitance and Thickness of p-n Junction Space-Charge Regions. IEEE Transactions on Electron Devices, 34, 1571-1579. https://doi.org/10.1109/T-ED.1987.23121
[21]
Zaraket, J., Aillerie, M. and Salame, C. (2015) Capacitance Evolution of Photovoltaic Solar Modules under the Influence of Electrical Stress. Energy Procedia, 74, 1466-1475.
https://doi.org/10.1016/j.egypro.2015.07.795