全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

盐碱胁迫植物对同种植物幼苗的生长发育及丛枝菌根的作用机理研究
The Growth and Development of Seedlings of the Same Plant and Arbuscular Mycorrhizal Mechanism of Action

DOI: 10.12677/BR.2020.93020, PP. 163-168

Keywords: 盐碱胁迫,成体植物,同种幼苗,资源分配
Saline-Alkali Stress
, Adult Plants, Conspecific Seedlings, Resource Distribution

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物幼苗能否在盐碱地定植成功是种群建立、维持发展的关键环节。研究表明,盐碱胁迫下成体植物对同种植物幼苗的定植有重要促进作用,目前对其解释主要围绕地上部分形成的冠层效应展开的,而对根际效应的研究较少,本文阐述成体植物地上部分和地下部分对同种幼苗的生长发育资源权衡分配策略,分析成体植物是如何通过根际资源的重分配来“保护”同种植物幼苗的生长发育;分析成体植物根际因子对同种幼苗的影响。揭示成体植物根际对幼苗“保护”的根际机理及丛枝菌根的作用,对加深认识植物种内相互作用机制和指导盐碱胁迫下种群的建立都有重要意义。
The plant seedlings that can successfully grow up in saline-alkali land are crucial progress for popu-lation establishment and maintaining development. Studies have shown that adult plants under salt-alkali stress play an important role in promoting the survival rate of seedlings of the same spe-cies. Currently, account for the phenomenon mainly revolves around the canopy effect formed by the above-ground part, but there are few studies on the rhizosphere effect. This study elucidates the aboveground and underground allocation strategy for the growth and development resources of the same species of seedlings in the aerial and underground parts, analyzes how adult plants “protect” the growth and development of seedlings of the same species through redistribution of rhizosphere resources, describes the effect of adult plant rhizosphere factors on the seedlings of the same spe-cies, reveals the rhizospheric mechanism of the adult plant rhizosphere on the “protection” of the seedlings of the same species and the effect of arbuscular mycorrhizal. It is of great significance to deepen the understanding of the interaction mechanism of plant species and guide the establish-ment of populations under salt-alkali stress.

References

[1]  Perez-Ramos, I.M., Gomez-Aparicio, L., Villa, R.R., Garcia, L.V. and Maranon, T. (2010) Seedling Growth and Mor-phology of Three Oak Species along Field Resource Gradients and Seed Mass Variation: A Seedling Age-Dependent Response. Journal of Vegetation Sciences, 21, 419-437.
https://doi.org/10.1111/j.1654-1103.2009.01165.x
[2]  Padilla, F.M. and Pugnaire, F.I. (2006) The Role of Nurse Plants in the Restoration of Degraded Environments. Frontiers in Ecology and the Environment, 4, 196-202.
https://doi.org/10.1890/1540-9295(2006)004[0196:TRONPI]2.0.CO;2
[3]  Gómez-Aparicio, L., Pe’rez-Ramo, I.M., Mendoza, I., Mat?’as, L., Quero, J.L., et al. (2008) Oak Seedling Survival and Growth along Resource Gradients in Mediterranean Forests: Implications for Regeneration in Current and Future Environmental Scenarios. Oikos, 117, 1683-1699.
https://doi.org/10.1111/j.1600-0706.2008.16814.x
[4]  Gómez-Aparicio, L., Gómez, J.M., Zamora, R. and Boettinger, J.L. (2005) Canopyvs. Soil Effects of Shrubs Facilitating Tree Seedlings in Mediterranean Montane Ecosystems. Journal of Vegetation Science, 16, 191-198.
https://doi.org/10.1111/j.1654-1103.2005.tb02355.x
[5]  Gómez-Aparicio, L., Valladares, F., Zamora, R. and Quero, J.L. (2005) Response of Tree Seedlings to the Abiotic Heterogeneity Generated by Nurse Shrubs: An Experi-mental Approach at Different Scales. Ecography, 28, 757-768.
https://doi.org/10.1111/j.2005.0906-7590.04337.x
[6]  Badano, E.I., Perez, D. and Vergara, C.H. (2009) Love of Nurse Plants Is Not Enough for Restoring Oak Forests in Aseasonally Dry Tropical Environment. Restoration Ecology, 17, 571-576.
https://doi.org/10.1111/j.1526-100X.2009.00530.x
[7]  Booth, M.G. and Hoeksema, J.D. (2010) Mycorrhizal Networks Counteract Competitive Effects of Canopy Trees on Seedling Survival. Ecology, 91, 2294-2302.
https://doi.org/10.1890/09-1139.1
[8]  Merrild, M.P., Ambus, P., Rosendahl, S. and Jakobsen, I. (2013) Common Arbuscular Mycorrhizal Networks Amplify Competition for Phosphorus between Seedlings and Established Plants. New Phytologist, 200, 229-240.
https://doi.org/10.1111/nph.12351
[9]  Garcia, D. and Obeso, J.R. (2003) Facilitation by Herbivore-Mediated Nurse Plants in a Threatened Tree, Taxus baccata: Local Effects and Landscape Level Consistency. Ecology, 26, 739-750.
https://doi.org/10.1111/j.0906-7590.2003.03601.x
[10]  Gómez-Aparicio, L., Zamora, R., Gómez, J.M., Hódar, J.A., Castro, J. and Baraza, E. (2004) Applying Plant Facilitation to Forest Restoration: A Meta-Analysis of the Use of Shrubs as Nurse Plants. Ecological Applications, 14, 1128-1138.
https://doi.org/10.1890/03-5084
[11]  Fajardo, A. and McIntire, E.J.B. (2011) Under Strong Niche Overlap Conspecifics Do Not Compete But Help Each Other to Survive: Facilitation at the Intraspecific Level. Journal of Ecology, 99, 642-650.
https://doi.org/10.1111/j.1365-2745.2010.01771.x
[12]  Caldeira, M.C., Ibanez, I., Nogueira, C., Bugalho, M.N., Lecomte, X., Moreira, A. and Pereira, J.S. (2014) Direct and Indirect Effects of Tree Canopy Facilitation in the Re-cruitment of Mediterranean Oaks. Journal of Applied Ecology, 51, 349-358.
https://doi.org/10.1111/1365-2664.12189
[13]  Prieto, I., Padilla, F.M., Armasm, C. and Pugnairem, F.I. (2011) The Role of Hydraulic Lift on Seedling Establishment under Anurse Plant Species in a Semi-Arid Environment. Pers-pectives in Plant Ecology Evolution and Systematics, 13, 181-187.
https://doi.org/10.1016/j.ppees.2011.05.002
[14]  Ren, H., Yang, L. and Liu, N. (2008) Nurse Plant Theory and Its Application in Ecological Restoration in Lower-Subtropics of China. Progress in Natural Science, 18, 137-142.
https://doi.org/10.1016/j.pnsc.2007.07.008
[15]  Hafidi, M, Ouahmane, L., Thioulouse, J., Sanguin, H., Boumez-zough, A., Prin, Y., Baudoin, E., Galiana, A. and Duponnois, R. (2013) Managing Mediterranean Nurse Plants-Mediated Effects on Soil Microbial Functions to Improve Rock Phosphate Solubilization Processes and Early Growth of Cupressus atlantica G. Ecological Engineering, 57, 57-64.
https://doi.org/10.1016/j.ecoleng.2013.04.006
[16]  Sthultz, C.M., Gehring, C.A. and Whitham, G. (2007) Shifts from Competition to Facilitation between a Foundation Tree and a Pioneer Shrub across Spatial and Temporal Scales in a Semiarid Woodland. New Phytologist, 173, 135-145.
https://doi.org/10.1111/j.1469-8137.2006.01915.x
[17]  Olla, G., Rouphael, Y., Cardarelli, M., Tullio, M., Rivera, C.M. and Rea, E. (2008) Alleviation of Salt Stress by Arbuscular Mycorrhizal in Zucchini Plants Grown at Low and High Phosphorus Concentration. Biology and Fertility of Soils, 44, 501-509.
https://doi.org/10.1007/s00374-007-0232-8
[18]  Gupta, R. and Krishnamurthy, V. (1996) Response of Mycorr-hizal and Non-Mycorrhizal Arachis Hypogaea to NaCl and Acid Stress. Mycorrhiza, 6, 145-149.
https://doi.org/10.1007/s005720050119
[19]  Giri, B., Kapoor, R. and Mukerji, K.G. (2007) Improved Tolerance of Acacia Nilotica to Salt Stress by Arbuscular Mycorrhiza, Glomus Fasciculatum May Be Partly Related to Elevated K/Na Ratios in Root and Shoot Tissues. Microbial Ecology, 54, 573-560.
https://doi.org/10.1007/s00248-007-9239-9
[20]  Jin, Z.Y., Yu, Z.X., Liu, S.J. and Xu, J. (2015) Abundance of Arbuscular Mycorrhizal Fungi Spores along a Gradient of Salinity. Mycorrhiza, Submitted Lamb, E.G., Kembel, S.W. and Cahill, J.F. (2009) Shoot, But Not Root, Competition Reduces Community Diversity in Experimental Mesocosms. Journal of Ecology, 97, 155-163.
https://doi.org/10.1111/j.1365-2745.2008.01454.x
[21]  Simard, S.W. and Durall, D.M. (2004) Mycorrhizal Net-works: A Review of Their Extent, Function, and Importance. Canadian Journal of Botany, 82, 1140-1165.
https://doi.org/10.1139/b04-116
[22]  Duponnois, R., Ouahmane, L., Kane, A., Thioulouse, J., Hafidi, M., Bou-mezzough, A., Prin, Y., Baudoin, E., Galiana, A. and Dreyfus, B. (2011) Nurse Shrubs Increased the Early Growth of Cupressus Seedlings by Enhancing belowground Mutualism and Soil Microbial Activity. Soil Biology & Biochemistry, 43, 2160-2168.
https://doi.org/10.1016/j.soilbio.2011.06.020
[23]  Janou?ková, M., Rydlová, J., Püeschel, D., Száková, J. and Vosátka, M. (2011) Extraradical Mycelium of Arbuscular Mycorrhizal Fungi Radiating from Large Plants Depresses the Growth of Nearby Seedlings in a Nutrient Deficient Substrate. Mycorrhiza, 21, 641-650.
https://doi.org/10.1007/s00572-011-0372-4
[24]  冯固, 李晓林, 张福锁, 李生秀. 盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J]. 应用生态学报, 2000, 11(4): 595-598.
[25]  Carrillo-Garcia, A., Bashan, Y. and Beth-lenfalvay, G.J. (2000) Resource-Island Soils and the Survival of the Giant Cactus, Cardon, Baja California Sur. Plant and Soil, 218, 207-214.
https://doi.org/10.1023/A:1014953028163
[26]  金樑, 陈国良, 赵银, 王晓娟. 丛枝菌根真菌对盐胁迫的响应及其与宿主植物的互作[J]. 生态环境, 2007, 16(1): 228-233.
[27]  赵可夫, 李法曾. 中国盐生植物[M]. 北京: 科学出版社, 1999: 1-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133