全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CO2催化加氢制乙醇及C2+烃类的研究进展
A Review of Catalytic Hydrogenation of Carbon Dioxide into Ethanol and C2+ Hydrocarbons

DOI: 10.12677/AAC.2020.102007, PP. 47-51

Keywords: 二氧化碳,加氢,C2+烃类,乙醇
Carbon Dioxide
, Hydrogenation, C2+ Species, Ethanol

Full-Text   Cite this paper   Add to My Lib

Abstract:

二氧化碳转化为高附加值的燃料和化学品,对于缓解全球变暖、改善生态环境和解决化石资源日益枯竭的难题具有重要的意义。通过加氢合成碳氢化合物,尤其是C2+烃类和含氧化合物的研究愈来愈引起大家的兴趣。设计制备兼具二氧化碳活化和C-C键耦合的多功能催化剂仍然是一较大的挑战。本文总结了二氧化碳加氢生成乙醇、长链烷烃、低碳烯烃的最新研究进展及应用,同时展望了二氧化碳加氢的发展趋势。
The transformation of carbon dioxide into high value-added fuels and chemicals is of great signifi-cance for mitigating global warming, and ameliorating the ecological environment and energy sup-ply problems. The hydrogenation of CO2, especially to C2+ hydrocarbons and oxygenates, has sparked growing interest. Designing and preparing multifunctional catalysts with both carbon di-oxide activation and C-C bond coupling is still a major challenge. This paper summarizes the latest research progress and applications of carbon dioxide hydrogenation to ethanol, long-chain alkanes, and low-carbon olefins, and meanwhile predicts the developing trends of carbon dioxide hydro-genation.

References

[1]  Olah, G.A., Prakash, G.K. and Goeppert, A. (2011) Anthropogenic Chemical Carbon Cycle for a Sustainable Future. Journal of the American Chemical Society, 133, 12881-12898.
https://doi.org/10.1021/ja202642y
[2]  Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H. and Sun, J. (2017) Directly Converting CO2 into a Gasoline Fuel. Nature Communications, 8, 15174.
https://doi.org/10.1038/ncomms15174
[3]  Yang, H., Zhang, C., Gao, P., Wang, H., Li, X., Zhong, L., Wei, W. and Sun, Y. (2017) A Review of the Catalytic Hydrogenation of Carbon Di-oxide into Value-Added Hydrocarbons. Catalysis Science & Technology, 7, 4580-4598.
https://doi.org/10.1039/C7CY01403A
[4]  Li, W., Wang, H., Jiang, X., Zhu, J., Liu, Z., Guo, X. and Song, C. (2018) A Short Review of Recent Advances in CO2 Hydrogenation to Hydrocarbons over Heterogeneous Catalysts. RSC Advances, 8, 7651-7669.
https://doi.org/10.1039/C7RA13546G
[5]  Havran, V., Dudukovic?, M.P. and Lo, C.S. (2011) Conversion of Methane and Carbon Dioxide to Higher Value Products. Industrial & Engineering Chemistry Research, 50, 7089-7100.
https://doi.org/10.1021/ie2000192
[6]  Guo, L.S., Sun, J., Ge, Q.J. and Tsubaki, N. (2018) Recent Advances in Direct Catalytic Hydrogenation of Carbon Dioxide to Valuable C2+ Hydrocarbons. Journal of Materials Chemistry A, 6, 23244-23262.
https://doi.org/10.1039/C8TA05377D
[7]  Wang, L.X., Wang, L., Liu, X.L., Wang, H., Zhang, W., Yang, Q., Xiao, F.S., et al. (2018) Selective Hydrogenation of CO2 into Ethanol over Cobalt Catalysts. Angewandte Chemie International Edition, 57, 6104-6108.
https://doi.org/10.1002/anie.201800729
[8]  Wang, L., He, S., Wang, L., Lei, Y., Meng, X. and Xiao, F.-S. (2019) Cobalt-Nickel Catalysts for Selective Hydrogenation of Carbon Dioxide into Ethanol. ACS Catalysis, 9, 11335-11340.
https://doi.org/10.1021/acscatal.9b04187
[9]  He, Z.H., Qian, Q.L., Ma, J., Meng, Q.L., Zhou, H.C., Song, J.L. and Han, B.X. (2016) Water-Enhanced Synthesis of Higher Alcohols from CO2 Hydrogenation over a Pt/Co3O4 Catalyst under Milder Conditions. Angewandte Chemie International Edition, 55, 737-741.
https://doi.org/10.1002/anie.201507585
[10]  An, B., Li, Z., Song, Y., Zhang, J., Zeng, L., Wang, C. and Lin, W. (2019) Cooperative Copper Centres in a Metal-Organic Framework for Selective Conversion of CO2 to Ethanol. Nature Catalysis, 2, 709-717.
https://doi.org/10.1038/s41929-019-0308-5
[11]  Satthawong, R., Koizumi, N. and Prasassarakich, P. (2013) Bimetallic Fe-Co Catalysts for CO2 Hydrogenation to Higher Hydrocarbons. Journal of CO2 Utilization, 3-4, 102-106.
https://doi.org/10.1016/j.jcou.2013.10.002
[12]  Kangvansura, P., Chew, L.M., Kongmark, C., Santawaja, P., Ruland, H., Xia, W., Schulz, H., Worayingyong, A. and Muhler, M. (2017) Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO2 Hydrogenation. Engineering, 3, 385-392.
https://doi.org/10.1016/J.ENG.2017.03.013
[13]  Gao, Y.N., Liu, S.Z., Zhao, Z.Q., Tao, H.C. and Sun, Z.Y. (2018) Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products. Acta Physico-Chimica Sinica, 34, 858-872.
[14]  Guo, L., Sun, J., Ji, X., Wen, Z., Yao, R., Xu, H. and Ge, Q. (2018) Directly Converting Carbon Dioxide to Linear α-Olefins on Bio-Promoted Catalysts. Communications Chemistry, 1, 1-8.
https://doi.org/10.1038/s42004-018-0012-4
[15]  Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W. and Sun, Y. (2017) Direct Conversion of CO2 into Liquid Fuels with High Se-lectivity over a Bifunctional Catalyst. Nature Chemistry, 9, 1019-1024.
https://doi.org/10.1038/nchem.2794
[16]  Li, Z., Qu, Y., Wang, J., Liu, H., Li, M., Miao, S. and Li, C. (2019) Highly Selective Conversion of Carbon Dioxide to Aromatics over Tandem Catalysts. Joule, 3, 570-583.
https://doi.org/10.1016/j.joule.2018.10.027
[17]  Gao, P., Dang, S., Li, S., Bu, X., Liu, Z., Qiu, M., Yang, C., Wang, H., Zhong, L., Han, Y., Liu, Q., Wei, W. and Sun, Y. (2017) Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis. ACS Catalysis, 8, 571-578.
https://doi.org/10.1021/acscatal.7b02649
[18]  Liu, X., Wang, M., Zhou, C., Zhang, Q., Deng, W. and Wang, Y. (2018) Selective Transformation of Carbon Dioxide into Lower Olefins with a Bifunctional Catalyst Composed of ZnGa2O4 and SAPO-34. Chemical Communications, 54, 140-143.
https://doi.org/10.1039/C7CC08642C
[19]  Li, Z., Wang, J., Qu, Y., Liu, H., Tang, C., Miao, S., Feng, Z., An, H. and Li, C. (2017) Highly Selective Conversion of Carbon Dioxide to Lower Olefins. ACS Catalysis, 7, 8544-8548.
https://doi.org/10.1021/acscatal.7b03251
[20]  Wang, G., Wang, Y., Cao, J., Wang, X., Yi, Y. and Liu, F. (2020) Fabrication of ZnZrO2@Al2O3@SAPO-34 Tandem Catalyst for CO2 Conversion to Hydrocarbons. Microporous and Mesoporous Materials, 291, Article ID: 109693.
https://doi.org/10.1016/j.micromeso.2019.109693

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133