全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

飞秒与纳秒激光在硅表面诱导微纳米结构的对比研究
Comparison of Structure of Femtosecond and Nanosecond Laser-Structured Silicon

DOI: 10.12677/APP.2020.103027, PP. 216-221

Keywords: 激光技术,微纳米结构,扫描电子显微镜,刻蚀
Laser Technique
, Nano- and Microscale Structures, SEM, Etch

Full-Text   Cite this paper   Add to My Lib

Abstract:

在SF6气体环境中,使用波长800 nm脉宽100 fs的飞秒激光和波长355 nm脉宽5 ns的纳秒激光分别对硅表面进行聚焦辐照,经过脉冲累加作用后在其表面形成了乳突型微结构。这两种不同激光所形成的结构形貌相似,但是结构的大小、分布均有着较大的差异,通过对比研究了两种光源条件下形成的乳突型微结构,讨论了两种微结构的形成机制。两种激光诱导微结构的不同主要由于飞秒和纳秒烧蚀机制不同,而且纳秒激光微构造情况下,气体气压对乳突形貌形成的作用更加明显。
Surface of silicon irradiated by femtosecond laser operating at the wavelength of 800 nm with 100 fs pulse duration and nanosecond laser operating at the wavelength of 355 nm with 5 ns pulse duration in the presence of SF6 is reported. The conical spikes are formed on the surface of silicon after the irradiation by accumulated pulses. Although the microstructures created by these two lasers are similar, some differences in structure size and distribution exist. The two kinds of microstructures are studied comparatively, and the mechanisms for formation are discussed. The differences between these two laser induced microstructures are mainly because of the different ablation mechanism for femtosecond and nanosecond laser. In the condition of nanosecond laser-structured microstructure, the effect of gas pressure is more obvious on conical spikes formation.

References

[1]  Crouch, C.H., Carey, J.E., Warrender, J.M., et al. (2004) Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon. Applied Physics Letters, 84, 1850-1852.
https://doi.org/10.1063/1.1667004
[2]  Halbwax, M., Sarnet, T., Delaporte, Ph., et al. (2008) Micro and Nano-Structuration of Silicon by Femtoseond Laser: Application to Silicon Photovoltaic Cells Fabrication. Thin Solid Films, 516, 6791-6795.
https://doi.org/10.1016/j.tsf.2007.12.117
[3]  Pedraza, A.J., Fowlkes, J.D. and Lowndes, D.H. (2004) Silicon Microcolumn Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation. Applied Physics Letters, 74, 2322-2324.
https://doi.org/10.1063/1.123838
[4]  Shen, M.Y., Crouch, C.H., Carey, J.E., et al. (2004) Femtosecond Laser-Induced Formation of Submicrometer Spikes on Silicon in Water. Applied Physics Letters, 85, 5694-5696.
https://doi.org/10.1063/1.1828575
[5]  Chuang, T.J. (1983) Surface Science Reports. North-Holland Pub. Co., Amsterdam.
[6]  Miller. J.C. (1994) Laser Ablation: Principles and Applications. Springer Series in Materials Sciences, 28, No. 1.
https://doi.org/10.1007/978-3-642-78720-1
[7]  Chuang, T.J. (1981) Multiple Photon Excited SF6 Interaction with Silicon Surfaces. Journal of Chemical Physics, 74, No. 1453.
https://doi.org/10.1063/1.441132
[8]  Raksi, F., Wilson, K., Jiamg, Z., et al. (1996) Ultrafast X-Ray Absorption Probing of a Chemical Reaction. Journal of Chemical Physics, 104, No. 6066.
https://doi.org/10.1063/1.471305
[9]  Eason, R. (1994) Pulsed Laser Deposition of Thin Films. Wiley-Interscience, New York, 89-113.
[10]  Vonder Linde, D., Sokolowski-Tinten, K. and Bialkowski, J. (1997) Applied Surface Science. Elsevier Science, Netherlands, 109-110.
https://doi.org/10.1016/S0169-4332(96)00611-3
[11]  Pedraza, A.J., Fowlkes, J.D. and Lowndes, D.H. (1999) Self-Organized Silicon Microcolumn Arrays Generated by Pulsed Laser Irradiation. Applied Physics A, 69, 731-734.
https://doi.org/10.1007/s003390051517

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133