全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

3D打印用(Mn,Fe)2(P,Si,B)球形粉的制备及磁热性能研究
Synthesis and Magnetocaloric Properties of Gas-Atomized (Mn,Fe)2(P,Si,B) Spherical Powders for 3D Printing Applications

DOI: 10.12677/APP.2020.103024, PP. 191-197

Keywords: 磁制冷,磁熵变,(Mn,Fe)2(P,Si),3D打印
Giant Magnetocaloric Effect
, Gas Atomization, (Mn,Fe)2(P,Si), 3D Printing

Full-Text   Cite this paper   Add to My Lib

Abstract:

增材制造(3D打印)作为一种新型的近净成型技术,有望实现磁制冷工质的快速、高效、复杂成型。然而,制备出球形度高、尺寸小、磁热性能优异的磁热合金球形粉是目前制约其3D打印成型的瓶颈问题。本研究采用气体雾化法成功制备出了(Mn,Fe)2(P,Si,B)多元合金球形雾化粉,借助扫描电子显微镜、X射线衍射仪、综合物性测量系统等深入研究了其显微形貌、晶体结构、磁相变行为以及磁热性能。本研究所获得的球形粉球形度高,有望使粉料在3D打印过程具有较高的流动性;所得球形粉颗粒尺寸小、尺寸分布窄,有利于激光3D打印工件获得高致密度和高尺寸精度;第二相含量低、热滞小、熵变值大,具有优异的磁热性能。由此可见,本研究获得的球形雾化粉十分适合3D打印等新型制造领域,为室温磁制冷材料的加工和成型提供新的思路,推动其产业化之路。
Additive manufacturing (3D printing), a novel near-net shape manufacturing technique, offers a rapid and efficient way to fabricate complex magnetocaloric heat exchangers. However, the syn-thesis of magnetocaloric powders with a small particle size, spherical shape and good magnetocaloric properties becomes the bottleneck for the implementation of 3D printing. In the present work, spherical-shaped (Mn,Fe)2(P,Si,B) magnetocaloric powders have been successfully synthesized via gas atomization. The morphology, crystal structure, magnetic phase transition behavior and the magnetocaloric properties have been studied using scanning electron microscope, X-ray diffractometer and physical property measurement system. The gas-atomized powders are highly spherical shaped, which benefits the mobility of the powders during the 3D printing process. The small particle size with a narrow size distribution is good for increasing the spatial resolution and the density of the printed heat exchangers. Besides that, the gas-atomized powders show a small thermal hysteresis and excellent magnetocaloric properties. Additionally, the weight fraction of the secondary phase is relative low in the gas-atomized powders, which will not dilute the magnetocaloric properties of the main phase. Consequently, the synthesized gas-atomized powders are well suited for the 3D printing processing, which provides a new horizon for manufacturing magnetocaloric materials and thus paves the way for magnetic refrigeration applications.

References

[1]  Brück, E. (2005) Developments in Magnetocaloric Refrigeration. Journal of Physics D: Applied Physics, 38, R381-R391.
https://doi.org/10.1088/0022-3727/38/23/R01
[2]  Gschneidner Jr., K.A. and Pecharsky, V.K. (2000) Magnetocaloric Materials. Annual Review of Materials Science, 30, 387-429.
https://doi.org/10.1146/annurev.matsci.30.1.387
[3]  Hu, F.X., Shen, B.G., Sun, J.R., et al. (2001) Influence of Negative Lattice Expansion and Metamagnetic Transition on Magnetic Entropy Change in the Compound LaFe11.4Si1.6. Applied Physics Letters, 78, 375-377.
https://doi.org/10.1063/1.1375836
[4]  Lai, J.W., Huang, B.W., Miao, X.F., et al. (2019) Combined Effect of Annealing Temperature and Vanadium Substitution for Magnetocaloric Mn1.2-xVxFe0.75P0.5Si0.5 Alloys. Journal of Alloys and Compounds, 803, 671-677.
https://doi.org/10.1016/j.jallcom.2019.06.239
[5]  Dung, N.H., Zhang, L. Ou, Z.Q. et al. (2012) High/Low-Moment Phase Transition in Hexagonal Mn-Fe-P-Si Compounds. Physics Review B, 86, Article ID: 045134.
https://doi.org/10.1103/PhysRevB.86.045134
[6]  Hu, S.Y., Miao, X.F., Liu, J., et al. (2019) Small Hysteresis and Giant Magnetocaloric Effect in Nb-Substituted (Mn,Fe)2(P,Si) Alloys. Intermetallics, 114, Article ID: 106602.
https://doi.org/10.1016/j.intermet.2019.106602
[7]  Hu, F.X., Shen, B.G. and Sun, J.R. (2000) Magnetic Entropy Change in Ni51.5Mn22.7Ga25.8 Alloy. Applied Physics Letters, 76, 3460-3462.
https://doi.org/10.1063/1.126677
[8]  Mostafaei, A., Kimes, K.A., Stevens, E.L., et al. (2017) Microstructural Evolution and Magnetic Properties of Binder Jet Additive Manufactured Ni-Mn-Ga Magnetic Shape Memory Alloy Foam. ActaMaterialia, 131, 482-490.
https://doi.org/10.1016/j.actamat.2017.04.010
[9]  Moore, J.D., Klemm, D., Lindackers, D., et al. (2013) Selective Laser Melting of La(Fe,Co,Si)13 Geometries for Magnetic Refrigeration. Journal of Applied Physics, 114, Article ID: 043907.
https://doi.org/10.1063/1.4816465
[10]  Caron, L., Ou, Z.Q., Nguyen, T.T., et al. (2009) On the Determination of the Magnetic Entropy Change in Materials with First-Order Transitions. Journal of Magnetism and Magnetic Materials, 321, 3559-3566.
https://doi.org/10.1016/j.jmmm.2009.06.086
[11]  Miao, X.F., Caron, L., Gercsi, Z., et al. (2015) Ther-mal-History Dependent Magnetoelastic Transition in (Mn,Fe)2(P,Si). Applied Physics Letters, 107, Article ID: 042403.
https://doi.org/10.1109/INTMAG.2015.7157651
[12]  Guillou, F., Yibole, H., Porcari, G., et al. (2014) Magnetocaloric Effect, Cyclability and Coefficient of Refrigerant Performance in the MnFe(P,Si,B) System. Journal of Applied Physics, 116, Article ID: 063903.
https://doi.org/10.1063/1.4892406

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133