全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于条件随机场的量化选股模型
Quantitative Stock Picking Model Based on Conditional Random Fields

DOI: 10.12677/SA.2019.82034, PP. 296-302

Keywords: 条件随机场,金融工程,隐马尔可夫模型,上涨模式
Conditional Random Field
, Financial En-gineering, HMM, Rising Pattern

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为特殊的条件随机场模型的隐马尔可夫模型是大奖章基金辉煌业绩背后的秘密武器之一,本文从金融程的角度出发,将隐马尔可夫模型引入到投资领域来预测个股未来的涨跌情况。假设涨和跌的股票各自都存在一种明确的模式,都分别可由一个HMM模型来描述,那么如果一个股票在表征上涨模式的HMM模型上的观测条件概率越大,说明该股票实际上涨的概率也越大。基于HMM模型构建了个股的HMM因子,并在沪深300成分股中通过在2016年到2018年历史回测的实证分析取得了不错的超额收益,从而说明条件随机场引入到量化选股中具有一定的预测能力。
As a special Conditional Random Field model, the Hidden Markov Model is one of the secret weapons behind the brilliant performance of the medallion fund. From the perspective of financial engineering, this paper introduces the Hidden Markov Model into the investment field to predict the future rising and falling situation of individual stocks. Assuming that each of the ups and downs has a clear pattern, which can be described by an HMM model, if the probability of a stock's observation on the HMM model characterizing the rising pattern is greater, the probability that the stock actually rises is also the bigger. Based on the HMM model, the HMM factor of individual stocks was constructed, and the empirical analysis of the historical back testing of the Shanghai and Shenzhen 300 constituent stocks from 2016 to 2018 achieved a good excess return, which indicated that the conditional random field introduced into the quantitative stock selection has a predictive ability.

References

[1]  郭平. 贝叶斯概率图像分割中混合模型参数高效计算的研究[J]. 计算机科学, 2002, 29(8): 101-103.
[2]  郭平, 卢汉清. 贝叶斯概率图像自动分割研究[J]. 光学学报, 2002, 22(12): 1479-1483.
[3]  郭松涛, 孙强, 等. 基于改进小波域隐马尔可夫模型的遥感图像分割[J]. 电子与信息报, 2005, 27(2): 286-289.
[4]  林亚忠. 基于Gibbs随机场模型的医学图像分割新算法研究[D]: [博士学位论文]. 广州: 第一军医大学, 2004.
[5]  Zhang, L. and Ji, Q. (2010) Image Segmentation with a Unified Graphical Model. IEEE Transactions on Pattern Analysis and Machine In-telligence, 32, 1406-1425.
https://doi.org/10.1109/TPAMI.2009.145
[6]  Zhang, L. and Ji, Q. (2011) A Bayesian Network for Automatic and Interactive Image Segmentation. IEEE Transaction on Image Processing, 20, 2582-2593.
https://doi.org/10.1109/TIP.2011.2121080

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133