全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ARIMA模型的北京市雾霾分析、预测与应用
Analysis, Prediction and Application of Beijing Smog Based on ARIMA

DOI: 10.12677/SA.2019.82043, PP. 381-393

Keywords: 雾霾,ARIMA模型,环境质量,预测
Haze
, ARIMA Model, Environmental Quality, Forecast

Full-Text   Cite this paper   Add to My Lib

Abstract:

环境污染一直是我国非常重视的问题,大气污染问题更是重中之重。空气污染物浓度与人们的生活健康息息相关。雾霾是现今秋冬天气中常见的一种天气现象,是由雾和霾组成的,但是两者之间又有很大区别。空气湿度大于90%时称之为雾,霾则小于80%,而雾霾介于两者之间[1]。本文根据北京市的环境污染数据,使用R语言对北京市近十几年的环境污染主要成分的数据进行主成分分析和时间建模,和对环境污染的预测,进而为提高北京市的环境质量,改善居民的生活环境提供依据。
Environmental pollution has always been a very important issue in China, especially the air pollution. The concentration of air pollutants is closely related to people’s life and health. Haze is a common weather phenomenon in autumn and winter, it is composed of fog and haze, but there is a big difference between them. When air humidity is greater than 90%, it is called fog, while haze is less than 80%, whereas haze is between the two
[1]. Based on the data of environmental pollution in recent ten years in Beijing, this paper uses R language to conduct principal component analysis and to establish the time series model. Utilizing the model, we predict environmental pollution, which provides a basis to improve the environmental quality of Beijing and the living environment of residents.

References

[1]  张逸卓. 应用时间序列模型对杭州PM2.5进行预测建模[J]. 科技经济导刊, 2017(36): 88-89.
[2]  王默玉, 庆亚敏, 翟清云. 基于主成分分析法的北京市经济发展与环境污染关系研究[J]. 电子技术与软件工程, 2018, 143(23): 182-183+245.
[3]  许晟昊. 应用时间序列分析对北京PM2.5浓度预测[J]. 当代化工研究, 2017(10): 62-64.
[4]  赵亚亚. 基于主成分分析的Laplace变换降维及其应用[D]: [硕士学位论文]. 兰州: 兰州大学, 2018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133