全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

延迟随机游动的超出的局部渐近性质
The Local Asymptotics of the Overshoot of a Delay Random Walk

DOI: 10.12677/SA.2019.82041, PP. 370-374

Keywords: 随机游动,延迟,超出,局部渐近性质
Random Walk
, Delay, Overshoot, Local Asymptotics

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论带有延迟的随机游动,利用建立的更新方程,借助零延迟的结果,在随机游动增量的分布具有重尾情形下,得到了延迟随机游动超出的局部渐近性质。
This paper investigates a delay random walk. Using the renewal equation and the results of random walk with zero delay, when the distribution of the increment of the random walk has a heavy tail, the paper obtains the local asymptotics of the overshoot of the delay random walk.

References

[1]  Janson, S. (1986) Moments for First-Passage and Last-Exit Times, the Minimum, and Related Quantities for Random Walks with Positive Drift. Advances in Applied Probability, 18, 865-879.
https://doi.org/10.2307/1427253
[2]  Borovkov, A.A. and Foss, S. (2000) Estimates for Overshooting an Arbi-trary Boundary by a Random Walk and Their Applications. Theory of Probability & Its Applications, 44, 231-253.
https://doi.org/10.1137/S0040585X97977537
[3]  Klüppelberg, C., Kyprianou, A.E. and Maller, R.A. (2004) Ruin Probabilities and Overshoots for General Lévy Insurance Risk Process. The Annals of Applied Probability, 14, 1766-1801.
https://doi.org/10.1214/105051604000000927
[4]  Tang, Q. (2007) The Overshoot of a Random Walk with Negative Drift. Statistics & Probability Letters, 77, 158-165.
https://doi.org/10.1016/j.spl.2006.06.005
[5]  Chen, G., Wang, Y. and Cheng, F. (2009) The Uniform Local Asymptotics of the Overshoot of a Random Walk with Heavy-Tailed Increments. Stochastic Models, 25, 508-521.
https://doi.org/10.1080/15326340903088859
[6]  Cui, Z., Wang, Y. and Wang, K. (2009) Asymptotics for the Moments of the Overshoot and Undershoot of a Random Walk. Advances in Applied Probability, 41, 469-494.
https://doi.org/10.1239/aap/1246886620
[7]  Klüppelberg, C. (1989) Subexponential Distributions and Charac-terizations of Related Classes. Probability Theory and Related Fields, 82, 259-269.
https://doi.org/10.1007/BF00354763
[8]  Cline, D.B.H. and Samorodnitsky, G. (1994) Subexponentiality of the Product of Independent Random Variables. Stochastic Processes and their Applications, 49, 75-98.
https://doi.org/10.1016/0304-4149(94)90113-9
[9]  Klüppelberg, C. (1988) Subexponential Distributions and In-tegrated Tails. Journal of Applied Probability, 25, 132-141.
https://doi.org/10.1017/S0021900200040705
[10]  Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997) Mod-elling Extremal Events. Springer, Berlin.
https://doi.org/10.1007/978-3-642-33483-2
[11]  Gao, Q. and Wang, Y. (2009) Ruin Probability and Local Ruin Probability in the Random Multi-Delayed Renewal Risk Model. Statistics & Probability Letters, 79, 588-596.
https://doi.org/10.1016/j.spl.2008.10.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133