本文阐明经典的概率统计理论和方法,在不确定性金融风险度量领域的不完全适用性及相应风险度量模型不确定性存在的根源。进而在非线性期望理论基础上,通过构建随机极限正态分布G-正态分布,结合VaR、CVaR风险度量模型,定义了随机极限风险度量模型GVaR和GCVaR。最后,理论上证明了以上两种风险度量模型是合理的、恰当的一致性风险度量。
This paper first illustrates classical
probability statistics theory and method, the incomplete applicability in the
field of uncertainty financial risk measurement, and the origin of the
uncertainty of the coherent risk measurement model. Then, based on the
nonlinear expectation theory, by constructing the G-normal distribution of the
random limit normal distribution, combining the VaR and CVaR risk
measurement model, we define the random limit risk measurement model GVaR and GCVaR. Finally, the above two risk measurement models are proved to
be reasonable and appropriate coherent risk measurements.
Peng, S.G. (2006) G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Ito’s Type. Stochastic Analysis & Applications, 1, 3-25.
[3]
Peng, S.G. (2007) G-Brownian Motion and Dynamic Risk Measure under Volatility Uncentainly. Princeton: Princeton University Press.
[4]
王鹏. G-期望及其相关计算问题[D]: [硕士学位论文]. 上海: 上海交通大学, 2011.
[5]
Artzner, P., Delban Eber, J.M. and Heath, D. (1999) Coherent measures of risk. Mathematical Finance, 4, 203-222.
https://doi.org/10.1111/1467-9965.00068
[6]
Rockafellar, R.T. and Uryasev, S. (2000) Optimization of Condi-tional Value-at-Risk. Journal of Risk, 2, 493-517.
https://doi.org/10.21314/JOR.2000.038