全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

等离激元去相位时间的调控研究进展
Research Progress of Modification the Plasmon Dephasing Time

DOI: 10.12677/APP.2020.101003, PP. 15-23

Keywords: 等离激元,去相位时间,等离激元模式,模式耦合
Plasmon
, Dephasing Time, Plasmon Mode, Mode Coupling

Full-Text   Cite this paper   Add to My Lib

Abstract:

等离激元是金属表面的自由电子与入射光子相互作用时形成的一种电磁波模式,等离激元在应用中的性能与等离激元的阻尼密切相关。等离激元的去相位时间是评价阻尼的重要参数,精确的测量及操纵去相位时间是等离激元在未来应用发展的先决条件。本文给出了改变纳米结构材料、结构尺寸、入射光源、等离激元模式及耦合作用等条件实现对金属纳米结构中等离激元场去相位时间调控的相关研究。本文所述内容有助于人们对等离激元动力学演化过程作进一步理解,为等离激元在超快光开关等领域的应用奠定基础。
Plasmon is an electromagnetic wave pattern formed when free electrons on a metal surface interact with incident photons. The performance of a plasmon in an application is closely related to the damping of the plasmon. The dephasing time of the plasmon is an important parameter for evalu-ating the damping. Accurate measurement and manipulation of the dephasing time are prerequi-sites for the development of plasmons in future applications. This paper presents the related re-search on changing the conditions of nanostructured materials, structure size, incident light source, plasmon mode, and coupling effect to control the dephasing time of plasmon field in metal nanostructures. The content described in this article will help people to further understand the dynamic evolution process of plasmon, and lay the foundation for the application of plasmon in the field of the ultrafast optical switches.

References

[1]  邵磊, 等. 局域表面等离激元[J]. 物理, 2014, 43(5): 290-298.
[2]  Wokaun, A., Gordon, J.P., et al. (1982) Radiation Damping in Surface-Enhanced Raman Scattering. Physical Review Letters, 48, 1574.
https://doi.org/10.1103/PhysRevLett.48.1574
[3]  Kneip, K., et al. (1997) Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters, 78, 1667-1670.
https://doi.org/10.1103/PhysRevLett.78.1667
[4]  Akselrod, G.M., et al. (2014) Probing the Mechanisms of Large Purcell Enhancement in Plasmonic Nanoantennas. Nature Photonics, 8, 835-840.
https://doi.org/10.1038/nphoton.2014.228
[5]  Kinkhabwala, A., et al. (2009) Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna. Nature Photonics, 3, 654-657.
https://doi.org/10.1038/nphoton.2009.187
[6]  Russell, K.J., Liu, T.L., Cui, S.Y. and Hu, E.L. (2012) Large Spontaneous Emission Enhancement in Plasmonic Nanocavities. Nature Photonics, 6, 459-462.
https://doi.org/10.1038/nphoton.2012.112
[7]  Tian, Y. and Tatsuma, T. (2005) Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. Journal of the American Chemical Society, 127, 7632-7637.
https://doi.org/10.1021/ja042192u
[8]  Zeng, P., et al. (2016) Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons. Nano Letters, 16, 2651-2656.
https://doi.org/10.1021/acs.nanolett.6b00310
[9]  Zentgraf, T., Christ, A., Kuhl, J. and Giessen, H. (2004) Tailoring the Ultrafast Dephasing of Quasiparticles in Metallic Photonic Crystals. Physical Review Letters, 93, Article ID: 243901.
https://doi.org/10.1103/PhysRevLett.93.243901
[10]  Sun, Q., Yu, H., et al. (2016) Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy. ACS Nano, 10, 3835-3842.
https://doi.org/10.1021/acsnano.6b00715
[11]  Aeschlimann, M., Brixner, T., et al. (2016) Determination of Local Optical Response Functions of Nanostructures with Increasing Complexity by Using Single and Coupled Lorentzian Oscillator Models. Applied Physics B, 122, Article No. 199.
https://doi.org/10.1007/s00340-016-6471-3
[12]  Yang, J.H., Sun, Q., et al. (2018) Manipulation of the Dephasing Time by Strong Coupling between Localized and Propagating Surface Plasmon Modes. Nature Communications, 9, Article No. 4858.
https://doi.org/10.1038/s41467-018-07356-x
[13]  Lamprecht, B., Leitner, A. and Aussenegg, F.R. (1999) SHG Studies of Plasmon Dephasing in Nanoparticles. Applied Physics B: Lasers and Optics, 68, 419-423.
https://doi.org/10.1007/s003400050643
[14]  Gotschy, W., Vonmetz, K., et al. (1996) Optical Dichroism of Lithographically Designed Silver Nanoparticle Films. Optics Letters, 21, 1099-1101.
https://doi.org/10.1364/OL.21.001099
[15]  Gotschy, W., Vonmetz, K., et al. (1996) Thin Films by Regular Patterns of Metal Nanoparticles: Tailoring the Optical Properties by Nanodesign. Applied Physics B, 63, 381-384.
https://doi.org/10.1007/BF01828742
[16]  Bosbach, J., Hendrich, C., et al. (2002) Ultrafast Dephasing of Surface Plasmon Excitation in Silver Nanoparticles: Influence of Particle Size, Shape, and Chemical Surrounding. Physical Review Letters, 89, Article ID: 257404.
https://doi.org/10.1103/PhysRevLett.89.257404
[17]  Franzl, T., Wilk, T., et al. (2002) Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters, 88, Article ID: 077402.
https://doi.org/10.1103/PhysRevLett.88.077402
[18]  Hubenthal, F., Hendrich, C., et al. (2010) Damping of the Localized Surface Plasmon Polariton Resonance of Gold Nanoparticles. Applied Physics B, 100, 225-230.
https://doi.org/10.1007/s00340-010-4064-0
[19]  Imura, K., Nagahara, T. and Okamoto, H. (2005) Near-Field Optical Imaging of Plasmon Modes in Gold Nanorods. The Journal of Chemical Physics, 122, Article ID: 154701.
https://doi.org/10.1063/1.1873692
[20]  Ndiaye, C., Zerrad, M., Lereu, A.L., et al. (2013) Giant Optical Field Enhancement in Multi-Dielectric Stacks by Photon Scanning Tunneling Microscopy. Applied Physics Letters, 103, Article ID: 131102.
https://doi.org/10.1063/1.4822093
[21]  Qin, J., Lang, P., Ji, B.Y., et al. (2016) Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy. Chinese Physics Letters, 33, Article ID: 116801.
https://doi.org/10.1088/0256-307X/33/11/116801
[22]  Qin, Y.L., Ji, B.Y., et al. (2019) Characterization of Ultrafast Plasmon Dynamics in Individual Gold Bowtie by Time-Resolved Photoemission Electron Microscopy. Applied Physics B, 125, Article No. 3.
https://doi.org/10.1007/s00340-018-7112-9
[23]  Chang, Y.C., Wang, S.M., et al. (2012) Observation of Absorption-Dominated Bonding Dark Plasmon Mode from Metal-Insulator-Metal Nanodisk Arrays Fabricated by Nanospherical-Lens Lithography. ACS Nano, 6, 3390-3396.
https://doi.org/10.1021/nn300420x
[24]  Liu, M.Z., Lee, T.W., et al. (2009) Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter. Physical Review Letters, 102, Article ID: 107401.
https://doi.org/10.1103/PhysRevLett.102.107401
[25]  Shelton, D.J., et al. (2011) Strong Coupling between Nanoscale Metamaterials and Phonons. Nano Letters, 11, 2104-2108.
https://doi.org/10.1021/nl200689z
[26]  Vakevainen, A.I., et al. (2014) Plasmonic Surface Lattice Resonances at the Strong Coupling Regime. Nano Letters, 14, 1721-1727.
https://doi.org/10.1021/nl4035219
[27]  Salomon, A., Gordon, R.J., Prior, Y., Seideman, T. and Sukharev, M. (2012) Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film. Physical Review Letters, 109, Article ID: 073002.
https://doi.org/10.1103/PhysRevLett.109.073002
[28]  Christ, A., Tikhodeev, S.G., Gippius, N.A., Kuhl, J. and Giessen, H. (2003) Waveguide Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab. Physical Review Letters, 91, Article ID: 183901.
https://doi.org/10.1103/PhysRevLett.91.183901
[29]  Vasa, P., et al. (2013) Real-Time Observation of Ultrafast Rabi Oscillations between Excitons and Plasmons in Metal Nanostructures with J-Aggregates. Nature Photonics, 7, 128-132.
https://doi.org/10.1038/nphoton.2012.340
[30]  Ueno, K., et al. (2019) Control of Plasmon Dephasing Time Using Stacked Nanogap Gold Structures for Strong Near-Field Enhancement. Applied Materials Today, 14, 159-165.
https://doi.org/10.1016/j.apmt.2018.12.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133