|
Applied Physics 2020
等离激元去相位时间的调控研究进展
|
Abstract:
[1] | 邵磊, 等. 局域表面等离激元[J]. 物理, 2014, 43(5): 290-298. |
[2] | Wokaun, A., Gordon, J.P., et al. (1982) Radiation Damping in Surface-Enhanced Raman Scattering. Physical Review Letters, 48, 1574. https://doi.org/10.1103/PhysRevLett.48.1574 |
[3] | Kneip, K., et al. (1997) Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS). Physical Review Letters, 78, 1667-1670. https://doi.org/10.1103/PhysRevLett.78.1667 |
[4] | Akselrod, G.M., et al. (2014) Probing the Mechanisms of Large Purcell Enhancement in Plasmonic Nanoantennas. Nature Photonics, 8, 835-840. https://doi.org/10.1038/nphoton.2014.228 |
[5] | Kinkhabwala, A., et al. (2009) Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna. Nature Photonics, 3, 654-657. https://doi.org/10.1038/nphoton.2009.187 |
[6] | Russell, K.J., Liu, T.L., Cui, S.Y. and Hu, E.L. (2012) Large Spontaneous Emission Enhancement in Plasmonic Nanocavities. Nature Photonics, 6, 459-462. https://doi.org/10.1038/nphoton.2012.112 |
[7] | Tian, Y. and Tatsuma, T. (2005) Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. Journal of the American Chemical Society, 127, 7632-7637.
https://doi.org/10.1021/ja042192u |
[8] | Zeng, P., et al. (2016) Photoinduced Electron Transfer in the Strong Coupling Regime: Waveguide-Plasmon Polaritons. Nano Letters, 16, 2651-2656. https://doi.org/10.1021/acs.nanolett.6b00310 |
[9] | Zentgraf, T., Christ, A., Kuhl, J. and Giessen, H. (2004) Tailoring the Ultrafast Dephasing of Quasiparticles in Metallic Photonic Crystals. Physical Review Letters, 93, Article ID: 243901. https://doi.org/10.1103/PhysRevLett.93.243901 |
[10] | Sun, Q., Yu, H., et al. (2016) Dissecting the Few-Femtosecond Dephasing Time of Dipole and Quadrupole Modes in Gold Nanoparticles Using Polarized Photoemission Electron Microscopy. ACS Nano, 10, 3835-3842.
https://doi.org/10.1021/acsnano.6b00715 |
[11] | Aeschlimann, M., Brixner, T., et al. (2016) Determination of Local Optical Response Functions of Nanostructures with Increasing Complexity by Using Single and Coupled Lorentzian Oscillator Models. Applied Physics B, 122, Article No. 199. https://doi.org/10.1007/s00340-016-6471-3 |
[12] | Yang, J.H., Sun, Q., et al. (2018) Manipulation of the Dephasing Time by Strong Coupling between Localized and Propagating Surface Plasmon Modes. Nature Communications, 9, Article No. 4858.
https://doi.org/10.1038/s41467-018-07356-x |
[13] | Lamprecht, B., Leitner, A. and Aussenegg, F.R. (1999) SHG Studies of Plasmon Dephasing in Nanoparticles. Applied Physics B: Lasers and Optics, 68, 419-423. https://doi.org/10.1007/s003400050643 |
[14] | Gotschy, W., Vonmetz, K., et al. (1996) Optical Dichroism of Lithographically Designed Silver Nanoparticle Films. Optics Letters, 21, 1099-1101. https://doi.org/10.1364/OL.21.001099 |
[15] | Gotschy, W., Vonmetz, K., et al. (1996) Thin Films by Regular Patterns of Metal Nanoparticles: Tailoring the Optical Properties by Nanodesign. Applied Physics B, 63, 381-384. https://doi.org/10.1007/BF01828742 |
[16] | Bosbach, J., Hendrich, C., et al. (2002) Ultrafast Dephasing of Surface Plasmon Excitation in Silver Nanoparticles: Influence of Particle Size, Shape, and Chemical Surrounding. Physical Review Letters, 89, Article ID: 257404.
https://doi.org/10.1103/PhysRevLett.89.257404 |
[17] | Franzl, T., Wilk, T., et al. (2002) Drastic Reduction of Plasmon Damping in Gold Nanorods. Physical Review Letters, 88, Article ID: 077402. https://doi.org/10.1103/PhysRevLett.88.077402 |
[18] | Hubenthal, F., Hendrich, C., et al. (2010) Damping of the Localized Surface Plasmon Polariton Resonance of Gold Nanoparticles. Applied Physics B, 100, 225-230. https://doi.org/10.1007/s00340-010-4064-0 |
[19] | Imura, K., Nagahara, T. and Okamoto, H. (2005) Near-Field Optical Imaging of Plasmon Modes in Gold Nanorods. The Journal of Chemical Physics, 122, Article ID: 154701. https://doi.org/10.1063/1.1873692 |
[20] | Ndiaye, C., Zerrad, M., Lereu, A.L., et al. (2013) Giant Optical Field Enhancement in Multi-Dielectric Stacks by Photon Scanning Tunneling Microscopy. Applied Physics Letters, 103, Article ID: 131102.
https://doi.org/10.1063/1.4822093 |
[21] | Qin, J., Lang, P., Ji, B.Y., et al. (2016) Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy. Chinese Physics Letters, 33, Article ID: 116801.
https://doi.org/10.1088/0256-307X/33/11/116801 |
[22] | Qin, Y.L., Ji, B.Y., et al. (2019) Characterization of Ultrafast Plasmon Dynamics in Individual Gold Bowtie by Time-Resolved Photoemission Electron Microscopy. Applied Physics B, 125, Article No. 3.
https://doi.org/10.1007/s00340-018-7112-9 |
[23] | Chang, Y.C., Wang, S.M., et al. (2012) Observation of Absorption-Dominated Bonding Dark Plasmon Mode from Metal-Insulator-Metal Nanodisk Arrays Fabricated by Nanospherical-Lens Lithography. ACS Nano, 6, 3390-3396.
https://doi.org/10.1021/nn300420x |
[24] | Liu, M.Z., Lee, T.W., et al. (2009) Excitation of Dark Plasmons in Metal Nanoparticles by a Localized Emitter. Physical Review Letters, 102, Article ID: 107401. https://doi.org/10.1103/PhysRevLett.102.107401 |
[25] | Shelton, D.J., et al. (2011) Strong Coupling between Nanoscale Metamaterials and Phonons. Nano Letters, 11, 2104-2108. https://doi.org/10.1021/nl200689z |
[26] | Vakevainen, A.I., et al. (2014) Plasmonic Surface Lattice Resonances at the Strong Coupling Regime. Nano Letters, 14, 1721-1727. https://doi.org/10.1021/nl4035219 |
[27] | Salomon, A., Gordon, R.J., Prior, Y., Seideman, T. and Sukharev, M. (2012) Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film. Physical Review Letters, 109, Article ID: 073002. https://doi.org/10.1103/PhysRevLett.109.073002 |
[28] | Christ, A., Tikhodeev, S.G., Gippius, N.A., Kuhl, J. and Giessen, H. (2003) Waveguide Plasmon Polaritons: Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab. Physical Review Letters, 91, Article ID: 183901. https://doi.org/10.1103/PhysRevLett.91.183901 |
[29] | Vasa, P., et al. (2013) Real-Time Observation of Ultrafast Rabi Oscillations between Excitons and Plasmons in Metal Nanostructures with J-Aggregates. Nature Photonics, 7, 128-132. https://doi.org/10.1038/nphoton.2012.340 |
[30] | Ueno, K., et al. (2019) Control of Plasmon Dephasing Time Using Stacked Nanogap Gold Structures for Strong Near-Field Enhancement. Applied Materials Today, 14, 159-165. https://doi.org/10.1016/j.apmt.2018.12.004 |