全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

双色光发射电子显微镜成像金纳米环等离激元场分布
Imaging the Plasmonic Field Distribution of the Gold Nanoring by Two-Color Photoemission Electron Microscopy

DOI: 10.12677/APP.2020.101005, PP. 38-46

Keywords: 等离激元,光发射电子显微镜,金纳米环,双色量子通道
Plasmons
, Photoemission Electron Microscope, Gold Nanoring, Two-Color Quantum Channel

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文利用双色–光发射电子显微镜(Photoemission Electron Microscopy, PEEM)成像了电子束加工的金纳米环样品的等离激元近场分布。利用双色的实验方法有效地打开了双色量子通道,从而导致发射电子的非线性阶次从3.80降低到1.85,并且光辐射电子的产额显著增加。通过近场PEEM图像表明,由于存在缺陷激发的强烈干扰,掩盖了结构的场分布信息。进一步分析缺陷位置处电子非线性阶次,发现纳米环缺陷位置处电子的非线性阶次下降程度显著低于非缺陷处。双色PEEM成像的技术对于等离激元近场成像等相关研究的发展起到推动作用。
In this paper, a two-color photoemission emission electron microscope (PEEM) was used to image the Plasmonic near-field distribution of the gold nanoring samples processed by the electron beam. The two-color experimental method effectively opened the two-color quantum channel, which caused the non-linear order of the emission electrons to be reduced from 3.80 to 1.85, and the photoemission electron increased significantly. The near-field PEEM image shows that the near-field distribution information of the structure is masked because of the strong interference of defect excitation. Further analysis of the non-linear order of the electrons at the defect location reveals that the degree of non-linear decrease of the electrons at the nanoring defect location is significantly lower than that at the non-defective location. The two-color PEEM imaging technology plays an important role in the development of the plasmons near-field imaging.

References

[1]  Homola, J., Yee, S.S. and Gauglitz, G. (1999) Surface Plasmon Resonance Sensors: Review. Sensors and Actuators B: Chemical, 54, 3-15.
https://doi.org/10.1016/S0925-4005(98)00321-9
[2]  Catchpole, K.R. and Polman, A. (2008) Design Principles for Particle Plasmon Enhanced Solar Cells. Applied Physics Letters, 93, Article ID: 191113.
https://doi.org/10.1063/1.3021072
[3]  Brolo, A.G., Arctander, E., Gordon, R., et al. (2004) Nanohole-Enhanced Raman Scattering. Nano Letters, 4, 2015-2018.
https://doi.org/10.1021/nl048818w
[4]  Zhang, S., Genov, D.A., Wang, Y., et al. (2008) Plasmon-Induced Transparency in Metamaterials. Physical Review Letters, 101, Article ID: 047401.
https://doi.org/10.1103/PhysRevLett.101.047401
[5]  Qin, J., Ji, B.Y., Hao, Z.Q., et al. (2015) Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy. Chinese Physics Letters, 32, Article ID: 064202.
https://doi.org/10.1088/0256-307X/32/6/064202
[6]  Hao, F., Larsson, E.M., Ali, T.A., et al. (2008) Shedding Light on Dark Plasmons in Gold Nanorings. Chemical Physics Letters, 458, 262-266.
https://doi.org/10.1016/j.cplett.2008.04.126
[7]  Larsson, E.M., Alegret, J., K?ll, M., et al. (2007) Sensing Characteristics of NIR Localized Surface Plasmon Resonances in Gold Nanorings for Application as Ultrasensitive Biosensors. Nano Letters, 7, 1256-1263.
https://doi.org/10.1021/nl0701612
[8]  Kim, S., Jung, J.M., Choi, D.G., et al. (2006) Patterned Arrays of Au Rings for Localized Surface Plasmon Resonance. Langmuir, 22, 7109-7112.
https://doi.org/10.1021/la0605844
[9]  Verellen, N., Sonnefraud, Y., Sobhani, H., et al. (2009) Fano Resonances in Individual Coherent Plasmonic Nanocavities. Nano Letters, 9, 1663-1667.
https://doi.org/10.1021/nl9001876
[10]  Imura, K., Nagahara, T. and Okamoto, H. (2005) Near-Field Optical Imaging of Plasmon Modes in Gold Nanorods. The Journal of Chemical Physics, 122, Article ID: 154701.
https://doi.org/10.1063/1.1873692
[11]  Ueno, K., Juodkazis, S., Mizeikis, V., et al. (2008) Clusters of Closely Spaced Gold Nanoparticles as a Source of Two-Photon Photoluminescence at Visible Wavelengths. Advanced Materials, 20, 26-30.
https://doi.org/10.1002/adma.200602680
[12]  Gorodetski, Y., Chervy, T., et al. (2016) Tracking Surface Plasmon Pulses Using Ultrafast Leakage Imaging. Optica, 3, 48-53.
https://doi.org/10.1364/OPTICA.3.000048
[13]  Hobbs, R., Putnam, W., Fallahi, A., et al. (2017) Mapping Photoemission and Hot-Electron Emission from Plasmonic Nanoantennas. Nano Letters, 17, 6069-6076.
[14]  Yu, H., Sun, Q., Ueno, K., et al. (2016) Exploring Coupled Plasmonic Nanostructures in the Near Field by Photoemission Electron Microscopy. ACS Nano, 10, 10373-10381.
https://doi.org/10.1021/acsnano.6b06206
[15]  Ji, B., Wang, Q., Song, X., et al. (2017) Disclosing Dark Mode of Femtosecond Plasmon with Photoemission Electron Microscopy. Journal of Physics D: Applied Physics, 50, Article ID: 415309.
https://doi.org/10.1088/1361-6463/aa83a0
[16]  Yu, H., Sun, Q., Yang, J., et al. (2017) Near-Field Spectral Properties of Coupled Plasmonic Nanoparticle Arrays. Optics Express, 25, 6883-6894.
https://doi.org/10.1364/OE.25.006883
[17]  Sun, Q., Ueno, K., Yu, H., et al. (2013) Direct Imaging of the Near Field and Dynamics of Surface Plasmon Resonance on Gold Nanostructures Using Photoemission Electron Microscopy. Light: Science & Applications, 2, e118.
https://doi.org/10.1038/lsa.2013.74
[18]  Hrelescu, C., Sau, T.K., Rogach, A.L., et al. (2011) Selective Excitation of Individual Plasmonic Hotspots at the Tips of Single Gold Nanostars. Nano Letters, 11, 402-407.
https://doi.org/10.1021/nl103007m
[19]  Joly, A.G., El-Khoury, P.Z. and Hess, W.P. (2018) Spatiotemporal Imaging of Surface Plasmons Using Two-Color Photoemission Electron Microscopy. The Journal of Physical Chemistry C, 122, 20981-20988.
[20]  Ji, B., Song, X., et al. (2018) Two-Color Multiphoton Emission for Comprehensive Reveal of Ultrafast Plasmonic Field Distribution. New Journal of Physics, 20, Article ID: 073031.
https://doi.org/10.1088/1367-2630/aad145
[21]  Huang, W., Becker, M., Beck, J., et al. (2017) Two-Color Multiphoton Emission from Nanotips. New Journal of Physics, 19, Article ID: 023011.
https://doi.org/10.1088/1367-2630/aa58bb
[22]  Polyakov, A., Senft, C., Thompson, K.F., et al. (2013) Plasmon-Enhanced Photocathode for High Brightness and High Repetition Rate X-Ray Sources. Physical Review Letters, 110, Article ID: 076802.
https://doi.org/10.1103/PhysRevLett.110.076802
[23]  Grubisic, A., Mukherjee, S., Halas, N., et al. (2013) Anomalously Strong Electric Near-Field Enhancements at Defect Sites on Au Nanoshells Observed by Ultrafast Scanning Photoemission Imaging Microscopy. The Journal of Physical Chemistry C, 117, 22545-22559.
https://doi.org/10.1021/jp407424n

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133