全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有内禀自旋–轨道耦合的Lieb晶格中Floquet拓扑相变
Floquet Topological Phase Transitions in Lieb Lattice with Intrinsic Spin-Orbit Coupling

DOI: 10.12677/APP.2020.101004, PP. 24-37

Keywords: Lieb晶格,内禀自旋–轨道耦合,Floquet理论,拓扑相变,无序
Lieb Lattice
, Intrinsic Spin-Orbit Coupling, Floquet Theory, Topological Phase Transition, Disorder

Full-Text   Cite this paper   Add to My Lib

Abstract:

我们基于Floquet理论研究了外加圆偏振光对具有内禀自旋–轨道耦合的Lieb晶格拓扑性质的影响。首先,我们采用数值方法计算自旋陈数分析Lieb晶格的拓扑性质。给出了当模型中次近邻格点间跃迁强度取不同值时,自旋陈数随着圆偏振光振幅变化关系。接着,我们在高频极限下给出了体系有效哈密顿量,理论计算了不同高对称点处能隙随者圆偏振光振幅变化的关系。计算结果表明,在高频极限下的理论结果与直接数值计算结果定性一致。最后,基于Bott指数的计算,我们研究了无序对外加圆偏振光作用下的Lieb晶格拓扑性质的影响。
We use Floquet theory to theoretically investigate the influence of the external circularly polarized light on the topological properties of the Lieb lattice with intrinsic spin-orbit coupling. Firstly, we use numerical calculation method to compute the spin Chern number to study the topological properties of the Lieb lattice. The variations of the spin Chern number with the amplitude of the circularly polarized light are obtained for different amplitudes of the next nearest-neighbor hop-ping of the model. Next, the effective Hamiltonian in the high-frequency limit is given, and the var-iations of the energy gaps at different high-symmetry points with the amplitude of the circularly polarized light are theoretically calculated. It is shown that the results from the theoretical calcu-lating in the high-frequency limit are qualitatively consistent with those by numerical calculations. Finally, based on the computation of the Bott index, the influence of disorder on the topological properties of the Lieb lattice with the external circularly polarized light is investigated.

References

[1]  Lieb, E.H. (1989) Two Theorems on the Hubbard Model. Physical Review Letters, 62, 1201-1204.
https://doi.org/10.1103/PhysRevLett.62.1201
[2]  Emery, V.J. (1987) Theory of High-T C Superconductivity in Oxides. Physical Review Letters, 58, 2794.
https://doi.org/10.1103/PhysRevLett.58.2794
[3]  Scalettar, R.T., Scalapino, D.J., Sugar, R.L. and White, S.R. (1991) Antiferromagnetic, Charge-Transfer, and Pairing Correlations in the Three-Band Hubbard Model. Physical Review B, 44, 770-781.
https://doi.org/10.1103/PhysRevB.44.770
[4]  Shen, R., Shao, L.B., Wang, B. and Xing, D.Y. (2010) Single Dirac Cone with a Flat Band Touching on Line-Centered-Square Optical Lattices. Physical Review B, 81, Article ID: 041410.
https://doi.org/10.1103/PhysRevB.81.041410
[5]  Apaja, V., Hyrk?s, M. and Manninen, M. (2010) Flat Bands, Dirac Cones, and Atom Dynamics in an Optical Lattice. Physical Review A, 82, Article ID: 041402.
https://doi.org/10.1103/PhysRevA.82.041402
[6]  Goldman, N., Urban, D.F. and Bercioux, D. (2011) Topological Phases for Fermionic Cold Atoms on the Lieb Lattice. Physical Review A, 83, Article ID: 063601.
https://doi.org/10.1103/PhysRevA.83.063601
[7]  Vicencio, R.A. and Mejía-Cortés, C. (2013) Diffraction-Free Image Transmission in Kagome Photonic Lattices. Journal of Optics, 16, Article ID: 015706.
https://doi.org/10.1088/2040-8978/16/1/015706
[8]  Guzmán-Silva, D., Mejía-Cortés, C., Bandres, M.A., Rechtsman, M.C., Weimann, S., Nolte, S., Segev, M., Szameit, A. and Vicencio, R.A. (2014) Experimental Observation of Bulk and Edge Transport in Photonic Lieb Lattices. New Journal of Physics, 16, Article ID: 063061.
https://doi.org/10.1088/1367-2630/16/6/063061
[9]  Vicencio, R.A., Cantillano, C., Morales-Inostroza, L., Real, B., Mejía-Cortés, C., Weimann, S., Szameit, A. and Molina, M.I. (2015) Observation of Localized States in Lieb Photonic Lattices. Physical Review Letters, 114, Article ID: 245503.
https://doi.org/10.1103/PhysRevLett.114.245503
[10]  Mukherjee, S., Spracklen, A., Choudhury, D., Goldman, N., ?hberg, P., Andersson, E. and Thomson, R.R. (2015) Observation of a Localized Flat-Band State in a Photonic Lieb Lattice. Physical Review Letters, 114, Article ID: 245504.
https://doi.org/10.1103/PhysRevLett.114.245504
[11]  Qiu, W.X., Li, S., Gao, J.H., Zhou, Y. and Zhang, F.C. (2016) Designing an Artificial Lieb Lattice on a Metal Surface. Physical Review B, 94, Article ID: 241409.
https://doi.org/10.1103/PhysRevB.94.241409
[12]  Ma, L., Qiu, W.X., Lü, J.T. and Gao, J.H. (2019) Orbital Degrees of Freedom in Artificial Electron Lattices on a Metal Surface. Physical Review B, 99, Article ID: 205403.
https://doi.org/10.1103/PhysRevB.99.205403
[13]  Drost, R., Ojanen, T., Harju, A. and Liljeroth, P. (2017) Topological States in Engineered Atomic Lattices. Nature Physics, 13, 668-671.
https://doi.org/10.1038/nphys4080
[14]  Slot, M.R., Gardenier, T.S., Jacobse, P.H., Van Miert, G.C., Kempkes, S.N., Zevenhuizen, S.J., Smith, C.M., Vanmaekelbergh, D. and Swart, I. (2017) Experimental Realization and Characterization of an Electronic Lieb Lattice. Nature Physics, 13, 672-676.
https://doi.org/10.1038/nphys4105
[15]  Kane, C.L. and Mele, E.J. (2005) Quantum Spin Hall Effect in Graphene. Physical Review Letters, 95, Article ID: 226801.
https://doi.org/10.1103/PhysRevLett.95.226801
[16]  Bernevig, B.A., Hughes, T.L. and Zhang, S.C. (2006) Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science, 314, 1757-1761.
https://doi.org/10.1126/science.1133734
[17]  K?nig, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.L. and Zhang, S.C. (2007) Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318, 766-770.
https://doi.org/10.1126/science.1148047
[18]  Hasan, M.Z. and Kane, C.L. (2010) Colloquium: Topological Insulators. Reviews of Modern Physics, 82, 3045-3067.
https://doi.org/10.1103/RevModPhys.82.3045
[19]  Qi, X.L. and Zhang, S.C. (2011) Topological Insulators and Superconductors. Reviews of Modern Physics, 83, 1057-1110.
https://doi.org/10.1103/RevModPhys.83.1057
[20]  Weeks, C. and Franz, M. (2010) Topological Insulators on the Lieb and Perovskite Lattices. Physical Review B, 82, Article ID: 085310.
https://doi.org/10.1103/PhysRevB.82.085310
[21]  Beugeling, W., Everts, J.C. and Smith, C.M. (2012) Topological Phase Transitions Driven by Next-Nearest-Neighbor Hopping in Two-Dimensional Lattices. Physical Review B, 86, Article ID: 195129.
https://doi.org/10.1103/PhysRevB.86.195129
[22]  Zhao, A. and Shen, S.Q. (2012) Quantum Anomalous Hall Effect in a Flat Band Ferromagnet. Physical Review B, 85, Article ID: 085209.
https://doi.org/10.1103/PhysRevB.85.085209
[23]  Weeks, C. and Franz, M. (2012) Flat Bands with Nontrivial Topology in Three Dimensions. Physical Review B, 85, Article ID: 041104.
https://doi.org/10.1103/PhysRevB.85.041104
[24]  Tsai, W.F., Fang, C., Yao, H. and Hu, J. (2015) Interaction-Driven Topological and Nematic Phases on the Lieb Lattice. New Journal of Physics, 17, Article ID: 055016.
https://doi.org/10.1088/1367-2630/17/5/055016
[25]  Ni??, M., Ostahie, B. and Aldea, A. (2013) Spectral and Transport Properties of the Two-Dimensional Lieb Lattice. Physical Review B, 87, Article ID: 125428.
https://doi.org/10.1103/PhysRevB.87.125428
[26]  Chen, R., Xu, D.H. and Zhou, B. (2017) Disorder-Induced Topological Phase Transitions on Lieb Lattices. Physical Review B, 96, Article ID: 205304.
https://doi.org/10.1103/PhysRevB.96.205304
[27]  Wang, Y.H., Steinberg, H., Jarillo-Herrero, P. and Gedik, N. (2013) Observation of Floquet-Bloch States on the SurFace of a Topological Insulator. Science, 342, 453-457.
https://doi.org/10.1126/science.1239834
[28]  Mahmood, F., Chan, C.K., Alpichshev, Z., Gardner, D., Lee, Y., Lee, P.A. and Gedik, N. (2016) Selective Scattering between Floquet-Bloch and Volkov States in a Topological Insulator. Nature Physics, 12, 306-310.
https://doi.org/10.1038/nphys3609
[29]  Sie, E.J. (2018) Valley-Selective Optical Stark Effect in Monolayer WS 2. In: Coherent Light-Matter Interactions in Monolayer Transition-Metal Dichalcogenides, Springer, Cham, 37-57.
https://doi.org/10.1007/978-3-319-69554-9_4
[30]  Kim, J., Hong, X., Jin, C., Shi, S.F., Chang, C.Y.S., Chiu, M.H., Li, L.J. and Wang, F. (2014) Ultrafast Generation of Pseudo-Magnetic Field for Valley Excitons in WSe2 Monolayers. Science, 346, 1205-1208.
https://doi.org/10.1126/science.1258122
[31]  Lindner, N.H., Refael, G. and Galitski, V. (2011) Floquet Topological Insulator in Semiconductor Quantum Wells. Nature Physics, 7, 490-495.
https://doi.org/10.1038/nphys1926
[32]  Lindner, N.H., Bergman, D.L., Refael, G. and Galitski, V. (2013) Topological Floquet Spectrum in Three Dimensions via a Two-Photon Resonance. Physical Review B, 87, Article ID: 235131.
https://doi.org/10.1103/PhysRevB.87.235131
[33]  Klinovaja, J., Stano, P. and Loss, D. (2016) Topological Floquet Phases in Driven Coupled Rashba Nanowires. Physical Review Letters, 116, Article ID: 176401.
https://doi.org/10.1103/PhysRevLett.116.176401
[34]  Thakurathi, M., Loss, D. and Klinovaja, J. (2017) Floquet Majorana Fermions and Parafermions in Driven Rashba Nanowires. Physical Review B, 95, Article ID: 155407.
https://doi.org/10.1103/PhysRevB.95.155407
[35]  Kitagawa, T., Oka, T., Brataas, A., Fu, L. and Demler, E. (2011) Transport Properties of Nonequilibrium Systems under the Application of Light: Photoinduced Quantum Hall Insulators without Landau Levels. Physical Review B, 84, Article ID: 235108.
https://doi.org/10.1103/PhysRevB.84.235108
[36]  Oka, T. and Aoki, H. (2009) Photovoltaic Hall Effect in Graphene. Physical Review B, 79, Article ID: 081406.
https://doi.org/10.1103/PhysRevB.79.081406
[37]  Delplace, P., Gómez-León, á. and Platero, G. (2013) Merging of Dirac Points and Floquet Topological Transitions in AC-Driven Graphene. Physical Review B, 88, Article ID: 245422.
https://doi.org/10.1103/PhysRevB.88.245422
[38]  Gómez-León, á., Delplace, P. and Platero, G. (2014) Engineering Anomalous Quantum Hall Plateaus and Antichiral States with Ac Fields. Physical Review B, 89, Article ID: 205408.
https://doi.org/10.1103/PhysRevB.89.205408
[39]  Mikami, T., Kitamura, S., Yasuda, K., Tsuji, N., Oka, T. and Aoki, H. (2016) Brillouin-Wigner Theory for High-Frequency Expansion in Periodically Driven Systems: Application to Floquet Topological Insulators. Physical Review B, 93, Article ID: 144307.
https://doi.org/10.1103/PhysRevB.93.144307
[40]  Jotzu, G., Messer, M., Desbuquois, R., Lebrat, M., Uehlinger, T., Greif, D. and Esslinger, T. (2014) Experimental Realization of the Topological Haldane Model with Ultracold Fermions. Nature, 515, 237-240.
https://doi.org/10.1038/nature13915
[41]  Rechtsman, M.C., Zeuner, J.M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M. and Szameit, A. (2013) Photonic Floquet Topological Insulators. Nature, 496, 196-200.
https://doi.org/10.1038/nature12066
[42]  Calvo, H.L., Torres, L.F., Perez-Piskunow, P.M., Balseiro, C.A. and Usaj, G. (2015) Floquet Interface States in Illuminated Three-Dimensional Topological Insulators. Physical Review B, 91, Article ID: 241404.
https://doi.org/10.1103/PhysRevB.91.241404
[43]  Fregoso, B.M., Wang, Y.H., Gedik, N. and Galitski, V. (2013) Driven Electronic States at the Surface of a Topological Insulator. Physical Review B, 88, Article ID: 155129.
https://doi.org/10.1103/PhysRevB.88.155129
[44]  Bucciantini, L., Roy, S., Kitamura, S. and Oka, T. (2017) Emergent Weyl Nodes and Fermi Arcs in a Floquet Weyl Semimetal. Physical Review B, 96, Article ID: 041126.
https://doi.org/10.1103/PhysRevB.96.041126
[45]  Wang, R., Wang, B., Shen, R., Sheng, L. and Xing, D.Y. (2014) Floquet Weyl Semimetal Induced by Off-Resonant Light. EPL (Europhysics Letters), 105, Article ID: 17004.
https://doi.org/10.1209/0295-5075/105/17004
[46]  Chan, C.K., Lee, P.A., Burch, K.S., Han, J.H. and Ran, Y. (2016) When Chiral Photons Meet Chiral Fermions: Photoinduced Anomalous Hall Effects in Weyl Semimetals. Physical Review Letters, 116, Article ID: 026805.
https://doi.org/10.1103/PhysRevLett.116.026805
[47]  Ebihara, S., Fukushima, K. and Oka, T. (2016) Chiral Pumping Effect Induced by Rotating Electric Fields. Physical Review B, 93, Article ID: 155107.
https://doi.org/10.1103/PhysRevB.93.155107
[48]  Chan, C.K., Oh, Y.T., Han, J.H. and Lee, P.A. (2016) Type-II Weyl Cone Transitions in Driven Semimetals. Physical Review B, 94, Article ID: 121106.
https://doi.org/10.1103/PhysRevB.94.121106
[49]  Yan, Z. and Wang, Z. (2016) Tunable Weyl Points in Periodically Driven Nodal Line Semimetals. Physical Review Letters, 117, Article ID: 087402.
https://doi.org/10.1103/PhysRevLett.117.087402
[50]  Narayan, A. (2016) Tunable Point Nodes from Line-Node Semimetals via Application of Light. Physical Review B, 94, Article ID: 041409.
https://doi.org/10.1103/PhysRevB.94.041409
[51]  Taguchi, K., Xu, D.H., Yamakage, A. and Law, K.T. (2016) Photovoltaic Anomalous Hall Effect in Line-Node Semimetals. Physical Review B, 94, Article ID: 155206.
https://doi.org/10.1103/PhysRevB.94.155206
[52]  Chen, R., Zhou, B. and Xu, D.H. (2018) Floquet Weyl Semimetals in Light-Irradiated Type-II and Hybrid Line-Node Semimetals. Physical Review B, 97, Article ID: 155152.
https://doi.org/10.1103/PhysRevB.97.155152
[53]  Chen, R., Xu, D.H. and Zhou, B. (2018) Floquet Topological Insulator Phase in a Weyl Semimetal Thin Film with Disorder. Physical Review B, 98, Article ID: 235159.
https://doi.org/10.1103/PhysRevB.98.235159
[54]  Du, L., Schnase, P.D., Barr, A.D., Barr, A.R. and Fiete, G.A. (2018) Floquet Topological Transitions in Extended Kane-Mele Models with Disorder. Physical Review B, 98, Article ID: 054203.
https://doi.org/10.1103/PhysRevB.98.054203
[55]  Li, J., Chu, R.L., Jain, J.K. and Shen, S.Q. (2009) Topological Anderson Insulator. Physical Review Letters, 102, Article ID: 136806.
https://doi.org/10.1103/PhysRevLett.102.136806
[56]  Jiang, H., Wang, L., Sun, Q.F. and Xie, X.C. (2009) Numerical Study of the Topological Anderson Insulator in HgTe/CdTe Auantum Wells. Physical Review B, 80, Article ID: 165316.
https://doi.org/10.1103/PhysRevB.80.165316
[57]  Groth, C.W., Wimmer, M., Akhmerov, A.R., Tworzyd?o, J. and Beenakker, C.W.J. (2009) Theory of the Topological Anderson Insulator. Physical Review Letters, 103, Article ID: 196805.
https://doi.org/10.1103/PhysRevLett.103.196805
[58]  Wu, B., Song, J., Zhou, J. and Jiang, H. (2016) Disorder Effects in Topological States: Brief Review of the Recent Developments. Chinese Physics B, 25, Article ID: 117311.
https://doi.org/10.1088/1674-1056/25/11/117311
[59]  Xing, Y., Zhang, L. and Wang, J. (2011) Topological Anderson Insulator Phenomena. Physical Review B, 84, Article ID: 035110.
https://doi.org/10.1103/PhysRevB.84.035110
[60]  Orth, C.P., Sekera, T., Bruder, C. and Schmidt, T.L. (2016) The Topological Anderson Insulator Phase in the Kane-Mele Model. Scientific Reports, 6, Article No. 24007.
https://doi.org/10.1038/srep24007
[61]  Guo, H.M., Rosenberg, G., Refael, G. and Franz, M. (2010) Topological Anderson Insulator in Three Dimensions. Physical Review Letters, 105, Article ID: 216601.
https://doi.org/10.1103/PhysRevLett.105.216601
[62]  Guo, H., Feng, S. and Shen, S.Q. (2011) Quantum Spin Hall Effect Induced by Nonmagnetic and Magnetic Staggered Potentials. Physical Review B, 83, Article ID: 045114.
https://doi.org/10.1103/PhysRevB.83.045114
[63]  Guo, H.M. (2010) Topological Invariant in Three-Dimensional Band Insulators with Disorder. Physical Review B, 82, Article ID: 115122.
https://doi.org/10.1103/PhysRevB.82.115122
[64]  Chen, R., Xu, D.H. and Zhou, B. (2017) Topological Anderson Insulator Phase in a Dirac-Semimetal Thin Film. Physical Review B, 95, Article ID: 245305.
https://doi.org/10.1103/PhysRevB.95.245305
[65]  Chen, R., Xu, D.H. and Zhou, B. (2019) Topological Anderson Insulator Phase in a Quasicrystal Lattice. Physical Review B, 100, Article ID: 115311.
https://doi.org/10.1103/PhysRevB.100.115311
[66]  Meier, E.J., An, F.A., Dauphin, A., Maffei, M., Massignan, P., Hughes, T.L. and Gadway, B. (2018) Observation of the Topological Anderson Insulator in Disordered Atomic Wires. Science, 362, 929-933.
https://doi.org/10.1126/science.aat3406
[67]  Stützer, S., Plotnik, Y., Lumer, Y., Titum, P., Lindner, N.H., Segev, M., Rechtsman, M.C. and Szameit, A. (2018) Photonic Topological Anderson Insulators. Nature, 560, 461-465.
https://doi.org/10.1038/s41586-018-0418-2
[68]  Titum, P., Lindner, N.H., Rechtsman, M.C. and Refael, G. (2015) Disorder-Induced Floquet Topological Insulators. Physical Review Letters, 114, Article ID: 056801.
https://doi.org/10.1103/PhysRevLett.114.056801
[69]  Fukui, T., Hatsugai, Y. and Suzuki, H. (2005) Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances. Journal of the Physical Society of Japan, 74, 1674-1677.
https://doi.org/10.1143/JPSJ.74.1674
[70]  Huang, H. and Liu, F. (2018) Quantum Spin Hall Effect and Spin Bott Index in a Quasicrystal Lattice. Physical Review Letters, 121, Article ID: 126401.
https://doi.org/10.1103/PhysRevLett.121.126401
[71]  Loring, T.A. and Hastings, M.B. (2011) Disordered Topological Insulators via C*-Algebras. EPL (Europhysics Letters), 92, Article ID: 67004.
https://doi.org/10.1209/0295-5075/92/67004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133