全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于最小距离和稀疏图正则约束的非负矩阵解混算法
A Nonnegative Matrix Unmixing Algorithm Based on Minimum Distance and Sparse Graph Regularity

DOI: 10.12677/GST.2020.81003, PP. 17-28

Keywords: 高光谱遥感,非负矩阵分解,最小距离约束,稀疏约束,图正则约束
Hyperspectral Remote Sensing
, Non-Negative Matrix Factorization, Minimum Distance Constraint, Sparse Constraints, Graph Regular Constraints

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对非负矩阵解混模型存在容易陷入局部极小值、受噪声影响较大以及混合像元中存在“异物同谱”端元的情况下解混精度较低等问题,为此,本文提出了一种基于最小距离和稀疏图正则约束的非负矩阵分解算法(DLGNMF)。该算法将空间信息与光谱信息相结合,在目标函数中引入单形体距离最小化约束作为端元的约束条件,弥补解混过程中高光谱数据空间几何特性的缺失,将稀疏约束和图正则化约束作为丰度的约束条件,保证了高光谱图像中端元分布的全局稀疏性与局部相似性,更好的改善了非负矩阵模型存在的问题,提高了解混的精度。
Aiming at the problems of non-negative matrix unmixing model, such as easy to fall into the local minimum, being greatly affected by noise, and low unmixing accuracy in the case of “foreign matter having the same spectrum” end elements in mixed pixels, etc., in this paper, a non-negative matrix factorization algorithm (DLGNMF) based on minimum distance and regular constraints of sparse graphs is proposed. The algorithm combines spatial information with spectral information. In the objective function, the constraint of minimizing the distance of a single body is introduced as the constraint condition of the end-member. The sparsity constraint and graph regularization constraint are taken as the constraints of abundance, which ensure the global sparsity and local similarity of the end-member distribution in the hyperspectral image, solve the problems of non-negative matrix model and improve the accuracy of solution unmixing.

References

[1]  童庆禧, 张兵, 郑兰芬. 高光谱遥感——原理、技术与应用[M]. 北京: 高等教育出版社, 2006: 246-287.
[2]  刘代志, 黄世奇, 王艺婷. 高光谱遥感图像处理与应用[M]. 北京: 科学出版社, 2016: 134-143.
[3]  赵春晖, 王立国, 齐滨. 高光谱遥感图像处理方法及其应用[M]. 北京: 电子工业出版社, 2016: 66-76.
[4]  张兵, 孙旭. 高光谱混合像元分解[M]. 北京: 科学出版社, 2015: 36-65.
[5]  Shahed, S., Ahmad, R.M. and Moslem, F. (2019) The Use of Unmixing Technique in Stream Sediment Geochemical Exploration. Journal of Geochemical Exploration, 208, Article ID: 106339.
https://doi.org/10.1016/j.gexplo.2019.106339
[6]  Lee, D.D. and Seung, H.S. (1999) Learning the Parts of Objects by Non-Negative Matrix Factorization. Nature, 401, 788-791.
https://doi.org/10.1038/44565
[7]  赵岩. 高光谱图像线性模型混合像元分解的算法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2019.
[8]  Jia, S. and Qian, Y.T. (2009) Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 47, 161-173.
https://doi.org/10.1109/TGRS.2008.2002882
[9]  Cai, D., He, X., Han, J., et al. (2011) Graph Regularized Nonnegative Matrix Factorization for Data Representation. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 33, 1548-1560.
https://doi.org/10.1109/TPAMI.2010.231
[10]  Li, C., Gao, L., Plaza, A., et al. (2017) FPGA Implementation of a Maximum Volume Algorithm for Endmember Extraction from Hyperspectral Imagery. Workshop on Hyperspectral Image & Signal Processing: Evolution in Remote Sensing.
[11]  Xu, J., Bobin, J., et al. (2019) Sparse Spectral Unmixing for Activity Estimation in γ-RAY Spectrometry Applied to Environmental Meas-urements. Applied Radiation and Isotopes.
https://doi.org/10.1016/j.apradiso.2019.108903
[12]  Wang, N., Du, B. and Zhang, L. (2013) An Endmember Dissimilarity Constrained Non-Negative Matrix Factorization Method for Hy-perspectral Unmixing. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 6, 554-569.
https://doi.org/10.1109/JSTARS.2013.2242255
[13]  孙莉, 于瑞林, 吴杰芳. 非负矩阵分解与光谱解混[J]. 山东农业大学学报(自然科学版), 2019(5): 1-5.
[14]  袁博. 基于混合像元空间与谱间相关性模型的NMF线性盲解混[J]. 测绘学报, 2019, 48(9): 1151-1160.
[15]  唐茂峰. 高光谱图像高阶非线性混合像元分解算法研究[D]: [硕士学位论文]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018.
[16]  Wang, X., Zhong, Y., Zhang, L., et al. (2017) Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 55, 6287-6304.
https://doi.org/10.1109/TGRS.2017.2724944
[17]  Miao, L.D. and Qi, H.R. (2007) Endmember Extraction from Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization. IEEE Transactions on Geoscience & Remote Sensing, 45, 765-777.
https://doi.org/10.1109/TGRS.2006.888466
[18]  李登刚. 基于非负矩阵分解的高光谱图像混合像元分解方法研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2016.
[19]  Zhu, F.Y., Wang, Y., Fan, B., et al. (2014) Spectral Unmixing via Data-Guided Sparsity. IEEE Transactions on Image Processing, 23, 5412-5427.
https://doi.org/10.1109/TIP.2014.2363423
[20]  刘雪松, 王斌, 张立明. 基于非负矩阵分解的髙光谱遥感凰像混合像元分解[J]. 红外与毫米波学报, 2011, 30(1): 27-32.
[21]  Nascimento, J.M.P. and Dias, J.M.B. (2005) Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 43, 898-910.
https://doi.org/10.1109/TGRS.2005.844293

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133