全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于硫系化合物纳米线相变存储器的研究进展
Research Progress on Chalcogenide Nanowire-Based Phase-Change Random Ac-cess Memories

DOI: 10.12677/APP.2020.102013, PP. 110-117

Keywords: 硫系化合物,纳米线,相变存储器,存储性能
Chalcogenide
, Nanowires, Phase Change Random Access Memory, Memory Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文首先简述硫系化合物纳米线相变存储器的原理、重要应用及优势。其次,分别从纳米线的制备、掺杂、多态存储、相变存储机理等方面,详细综述了基于硫系化合物纳米线相变存储的研究进展。最后提出了硫系化合物纳米线相变存储器领域需要进一步研究的方向。
The principles, important applications, and advantages of chalcogenide nanowire-based phase-change random access memories were introduced in this paper firstly. Secondly, research progress on the preparation, doping, multistate storage, and phase-change mechanism of chalcogenide nanowire-based phase-change memories was reviewed. Finally, the future research directions of chalcogenide nanowire-based phase change memories were proposed.

References

[1]  Privitera, S.M., Mio, A.M., Dück, M., et al. (2018) Atomic Disordering Processes in Crystalline GeTe Induced by Ion Irradiation. Journal of Physics D: Applied Physics, 51, Article ID: 495103.
https://doi.org/10.1088/1361-6463/aae4ae
[2]  Gabardi, S., Baldi, E., Bosoni, E., et al. (2017) Atomistic Simulations of the Crystallization and Aging of GeTe Nanowires. Journal of Physical Chemistry C, 121, 23827-23838.
https://doi.org/10.1021/acs.jpcc.7b09862
[3]  Lencer, D., Salinga, M. and Wuttig, M. (2011) Design Rules for Phase-Change Materials in Data Storage Applications. Advanced Materials, 23, 2030-2058.
https://doi.org/10.1002/adma.201004255
[4]  Lu, H., Thelander, E., Gerlach, J.W., et al. (2013) Single Pulse Laser-Induced Phase Transitions of PLD-Deposited Ge2Sb2Te5 Films. Advanced Functional Materials, 23, 3621-3627.
https://doi.org/10.1002/adfm.201202665
[5]  Noé, P., Sabbione, C., Castellani1, N., et al. (2016) Structural Change with the Resistance Drift Phenomenon in Amorphous GeTe Phase Change Materials’ Thin Films. Journal of Physics D: Applied Physics, 49, Article ID: 035305.
https://doi.org/10.1088/0022-3727/49/3/035305
[6]  Yu, B., Sun, X., Ju S., et al. (2008) Chalcogenide-Nanowire-Based Phase Change Memory, IEEE Transactions on Nanotechnology, 7, 496-502.
https://doi.org/10.1109/TNANO.2008.926374
[7]  Lee, S.H., Jung, Y., Agarwal, R., et al. (2007) Highly Scalable Non-Volatile and Ultra-Low-Power Phase-Change Nanowire Memory. Nature Nanotechnology, 2, 626-630.
https://doi.org/10.1038/nnano.2007.291
[8]  Jung, Y., Lee, S.H., Jennings, A.T., et al. (2008) Core-Shell Heterostructured Phase Change Nanowire Multistate Memory. Nano Letters, 8, 2056-2062.
https://doi.org/10.1021/nl801482z
[9]  Mitra, M., Jung, Y., Gianola, D.S., et al. (2010) Extremely Low Drift of Resistance and Threshold Voltage in Amorphous Phase Change Nanowire Devices. Applied Physics Letters, 96, Article ID: 222111.
https://doi.org/10.1063/1.3447941
[10]  Nam, S.W., Chung, H.S., Lo, Y.C., et al. (2012) Electrical Wind Force-Driven and Dislocation-Templated Amorphization in Phase-Change Nanowires. Science, 336, 1561-1566.
https://doi.org/10.1126/science.1220119
[11]  Wright, C.D., Armand, M. and Aziz, M.M. (2006) Terabit-Per-Square-Inch Data Storage Using Phase-Change Media and Scanning Electrical Nanoprobes. IEEE Transactions on Nanotechnology, 5, 50-61.
https://doi.org/10.1109/TNANO.2005.861400
[12]  Li, M. (2012) Size-Dependent Nucleation Rate of Ge2Sb2Te5 Nanowires in the Amorphous Phase and Crystallization Activation Energy. Materials Letters, 76, 138-140.
https://doi.org/10.1016/j.matlet.2012.02.085
[13]  Sun, X., Yu, B., Ng, G., et al. (2007) One-Dimensional Phase-Change Nanostructure: Germanium Telluride Nanowire. Journal of Physical Chemistry C, 111, 2421-2425.
https://doi.org/10.1021/jp0658804
[14]  Zhang, J., Kong, T., Huang, R., et al. (2014) Bismuth Doping Strategies in GeTe Nanowires to Promote High-Temperature Phase Transition from Rhombohedral to Face-Centered Cubic Structure. Applied Physics Letters, 105, Article ID: 202103.
https://doi.org/10.1063/1.4902091
[15]  孙雄图. 基于电化学沉积法的碲化锗薄膜及纳米线研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2019.
[16]  Longo, M., Fallica, R., Wiemer, C., et al. (2012) Metal Organic Chemical Vapor Deposition of Phase Change Ge1Sb2Te4 Nanowires. Nano Letters, 12, 1509-1515.
https://doi.org/10.1021/nl204301h
[17]  Longo, M., Wiemer, C., Salicio, O., et al. (2011) Au-Catalyzed Self Assembly of GeTe Nanowires by MOCVD. Journal of Crystal Growth, 315, 152-156.
https://doi.org/10.1016/j.jcrysgro.2010.09.065
[18]  马海林, 苏庆, 兰伟, 刘雪芹. 氧流量对热蒸发CVD法生长β-Ga2O3纳米材料的结构及发光特性的影响[J]. 物理学报, 2013, 57(11): 7322-7326.
[19]  Simanullang, M., Usami, K., Kodera, T., et al. (2011) Germanium Nanowires with 3-nm-Diameter Prepared by Low Temperature Vapour-Liquid-Solid Chemical Vapour Deposition. Journal of Nanoscience and Nanotechnology, 11, 8163-8168.
https://doi.org/10.1166/jnn.2011.5049
[20]  Zhang, J., Huang, R., Shi, L., et al. (2013) Bi Doping Modulating Structure and Phase-Change Properties of GeTe Nanowires. Applied Physics Letters, 102, Article ID: 063104.
https://doi.org/10.1063/1.4790590
[21]  Longoa, M., Stoychevaa, T., Fallicaa, R., et al. (2013) Au-Catalyzed Synthesis and Characterisation of Phase Change Ge-Doped Sb-Te Nanowires by MOCVD. Journal of Crystal Growth, 370, 323-327.
https://doi.org/10.1016/j.jcrysgro.2012.09.021
[22]  Zhu, Y., Zhang, Z., Song, S., et al. (2015) Ni-Doped GST Materials for High Speed Phase Change Memory Applications. Materials Research Bulletin, 64, 333-336.
https://doi.org/10.1016/j.materresbull.2015.01.016
[23]  Xu, L., Li, Y., Yu, N., et al. (2015) Local Order Origin of Thermal Stability Enhancement in Amorphous Ag Doping GeTe. Applied Physics Letters, 106, Article ID: 031904.
https://doi.org/10.1063/1.4906332
[24]  Longo, M., Stoycheva, T., Fallica, R., et al. (2013) Au-Catalyzed Synthesis and Characterisation of Phase Change Ge-Doped Sb-Te Nanowires by MOCVD. Journal of Crystal Growth, 370, 323-327.
https://doi.org/10.1016/j.jcrysgro.2012.09.021
[25]  Wu, D., Jiang, Y., Yu, Y., et al. (2012) Nonvolatile Multibit Schottky Memory Based on Single N-Type Ga Doped CdSe Nanowires. Nanotechnology, 3, Article ID: 485203.
https://doi.org/10.1088/0957-4484/23/48/485203
[26]  Hong, S.H., Lee, H., Kim, K., et al. (2011) Fabrication of Multilevel Switching High Density Phase Change Data Recording Using Stacked GeTe/GeSbTe Structure. Japanese Journal of Applied Physics, 50, Article ID: 081201.
https://doi.org/10.7567/JJAP.50.081201
[27]  Lee, J.S., Brittman, S.B., Yu, D., et al. (2008) Vapor-Liquid-Solid and Vapor-Solid Growth of Phase-Change Sb2Te3 Nanowires and Sb2Te3/GeTe Nanowire. Journal of America Chemistry Society, 130, 6252-6258.
https://doi.org/10.1021/ja711481b
[28]  Lu, H., Thelander, E., Gerlach, J., et al. (2012) Ge2Sb2Te5 Phase-Change Films on Polyimide Substrates by Pulsed Laser Deposition. Applied Physics Letters, 101, Article ID: 031905.
https://doi.org/10.1063/1.4737410
[29]  赖云锋, 冯洁, 乔保卫, 等. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能[J]. 物理学报, 2006, 55(8): 4347-4352.
[30]  Loke, D., Lee, T.H., Wang, W.J., et al. (2012) Breaking the Speed Limits of Phase-Change Memory. Science, 336, 1566-1569.
https://doi.org/10.1126/science.1221561
[31]  Ji, X. and Feng, X. (2013) Dislocation-Templated Amorphization of Ge2Sb2Te5 Nanowires under Electric Pulses: A Theoretical Model. Journal of Applied Physics, 113, Article ID: 243507.
https://doi.org/10.1063/1.4812367

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133