全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

重构蓝宝石表面诱导La0.7Sr0.3MnO3纳米结构及其性质研究
Study on the Properties of La0.7Sr0.3MnO3 Nanostructures Induced by Reconstruction of Sapphire surface

DOI: 10.12677/APP.2020.102016, PP. 131-138

Keywords: 表面重构,蓝宝石,LSMO,MIT各向异性,PM-FM各向异性
Surface Reconstruction
, Sapphire, La0.7Sr0.3MnO3, MIT Anisotropy, PM-FM Anisotropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

二维La0.7Sr0.3MnO3纳米薄膜在由m面蓝宝石表面重构的具有纳米凹槽的横向纳米复合材料下制备。通过XRD测试样品晶体结构,确定样品物质组成,用原子力显微镜(AFM)测试薄膜表面形貌。我们通过范德堡法测试了薄膜温度–电阻(R-T)曲线来表征其金属-绝缘体转变(MIT)特性,发现在重构蓝宝石基片的不同取向,即在沟道的不同方向上,其MIT表现出各向异性。从磁化强度随温度的变化,我们发现LSMO薄膜显示出顺磁–铁磁(PM-FM)相变,并且在沟道的不同方向上,其PM-FM也表现出各向异性。
Two-dimensional La0.7Sr0.3MnO3 nanofilms were prepared on transverse nanocomposites with nanogrooves reconstructed from the surface of sapphire with m surface. The crystal structure and the composition of the samples were determined by X-Ray Diffraction (XRD), and the surface morphology of the films was tested by atomic force microscope (AFM). The Vanderbilt method was applied to measure the temperature-resistance (R-T) curve of the films in order to characterize its MIT properties. It is found that the MIT of reconstructed sapphire substrate shows anisotropy in different orientations of channels. From the variation of magnetization intensity with temperature, we found that LSMO film showed paramagnetic-ferromagnetic (PM-FM) phase transition, and its PM-FM also showed anisotropy in different directions of the channel.

References

[1]  Huczko, A. (2000) Template-Based Synthesis of Nanomaterials. Applied Physics A (Materials Science Processing), 70, 365-376.
https://doi.org/10.1007/s003390051050
[2]  Wang, Q.R. (2018) Modified Emission of Polymer Films by Ultrathin Ag Nanoparticle Films. Vacuum, 157, 111-114.
https://doi.org/10.1016/j.vacuum.2018.08.025
[3]  Lv, Y., Ma, J., Mi, W., et al. (2012) Characterization of β-Ga2O3 Thin Films on Sapphire (0001) Using Metal-Organic Chemical Vapor Deposition Technique. Vacuum, 86, 1850-1854.
https://doi.org/10.1016/j.vacuum.2012.04.019
[4]  Tsivion, D., Schvartzman, M., Popovitz-Biro, R., von Huth, P. and Joselevich, E. (2011) Guided Growth of Millimeter-Long Horizontal Nanowires with Controlled Orientations. Science, 333, 1003-1007.
https://doi.org/10.1126/science.1208455
[5]  Mullins, W.W. (1961) Theory of Linear Facet Growth during Thermal Etching. Philosophical Magazine, 6, 1313-1341.
https://doi.org/10.1080/14786436108241227
[6]  Wecker, J., Holzapfel, B., Schultz, L. and Samwer, K. (1993) Giant Negative Magnetoresistance in Perovskitelike La2/3Ba1/3MnOx Ferromagnetic Films. Physical Review Letters, 71, 2331-2333.
https://doi.org/10.1103/PhysRevLett.71.2331
[7]  Heffelfinger, J.R. and Carter, C.B. (1997) Mechanisms of Surface Faceting and Coarsening. Surface Science, 389, 188-200.
https://doi.org/10.1016/S0039-6028(97)00411-1
[8]  Jin, S., Tiefel, T.H., Mccormack, M., et al. (1994) Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science, 264, 413-415.
https://doi.org/10.1126/science.264.5157.413
[9]  Uehara, M., Mori, S., Chen, C.H. and Cheong, S.-W. (1999) Percolative Phase Separation Underliescolossal Magnetoresistance in Mixed-Valent Manganites. Nature, 399, 560-563.
https://doi.org/10.1038/21142
[10]  Elbio, D., Hotta, T. and Moreo, A. (2001) Colossal Magnetoresistant Materials: The Key Role of Phase Separation. Physics Reports, 344, 1-153.
[11]  Wolf, S.A. (2001) Spintronics: A Spin-Based Electronics Vision for the Future. Science, 294, 1488-1495.
https://doi.org/10.1126/science.1065389
[12]  Oksenberg, E., Popovitz-Biro, R., Rechav, K. and Joselevich, E. (2015) Guided Growth of Horizontal ZnSe Nanowires and Their Integration into High-Performance Blue-UV Photodetectors. Advanced Materials, 27, 3999-4005.
https://doi.org/10.1002/adma.201500736
[13]  Rothman, A., Forsht, T., Danieli, Y., et al. (2018) Guided Growth of Horizontal ZnS Nanowires on Flat and Faceted Sapphire Surfaces. The Journal of Physical Chemistry C, 122, 12413-12420.
https://doi.org/10.1021/acs.jpcc.8b04063
[14]  Heffelfinger, J.R., Bench, M.W. and Carter, C.B. (1995) On the Faceting of Ceramic Surfaces. Surface Science, 343, L1161-L1166.
https://doi.org/10.1016/0039-6028(95)00896-9
[15]  Weiss, J.D. (2013) A Comparison of Two van-der-Pauw Measurement Configurations of Resistivity. Materials Science in Semiconductor Processing, 16, 1637-1644.
https://doi.org/10.1016/j.mssp.2013.05.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133