全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

飞秒激光制备微纳结构表面提升金属沸腾传热性能的研究
Enhancement of Metal Boiling Heat Transfer Performance on Micro-Nano Structure Surface Prepared by Femtosecond Laser

DOI: 10.12677/APP.2020.102019, PP. 153-160

Keywords: 飞秒激光,微纳结构,沸腾传热
Femtosecond Laser
, Micro-Nano Structure, Boiling Heat Transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文对功能化金属表面沸腾传热进行了实验研究。目前的研究表明微纳结构表面可有效提升沸腾传热性能,金属表面的强化传热对于大规模高热流密度应用非常重要,例如在核电工业中。通过飞秒激光表面处理技术在金属表面制备了周期性波纹结构,以去离子水为工质,采用池沸腾实验装置,研究了换热系数(HTC)和临界热流(CHF)。通过池沸腾实验研究表明,相对于光滑表面飞秒激光制备的微纳结构表面传热性能均在不同程度得到了有效提升。
In this paper, the experimental study of boiling heat transfer on functionalized metal surfaces is carried out. Current research shows that micro-nano structured surfaces can effectively improve boiling heat transfer performance, and enhanced heat transfer on metal surfaces is very important for large-scale high heat flux applications, such as in the nuclear power industry. A periodic corrugated structure was prepared on the metal surface by using femtosecond laser surface treatment technology. Deionized water was used as the working medium. A pool boiling experimental device was used to study the heat transfer coefficient (HTC) and critical heat flow (CHF). The results of pool boiling experiments show that the heat transfer performance of micro-nano structures on the smooth surface of femtosecond lasers has been effectively improved for varying degrees.

References

[1]  魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108.
[2]  Shen, C., Zhang, C., Bao, Y., et al. (2018) Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes. International Journal of Thermal Sciences, 130, 47-58.
https://doi.org/10.1016/j.ijthermalsci.2018.04.011
[3]  Ndao, S., Peles, Y. and Jensen, M.K. (2012) Experimental Investigation of Flow Boiling Heat Transfer of Jet Impingement on Smooth and Micro Structured Surfaces. International Journal of Heat and Mass Transfer, 55, 5093-5101.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.009
[4]  Yu, C.K., Lu, D.C. and Cheng, T.C. (2006) Pool Boiling Heat Transfer on Artificial Micro-Cavity Surfaces in Dielectric Fluid FC-72. Journal of Micromechanics and Microengineering, 16, 2092-2099.
https://doi.org/10.1088/0960-1317/16/10/024
[5]  Nguyen, C.T., Roy, G., Gauthier, C., et al. (2007) Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System. Applied Thermal Engineering, 27, 1501-1506.
https://doi.org/10.1016/j.applthermaleng.2006.09.028
[6]  Vassallo, P., Kumar, R. and D’Amico, S. (2004) Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids. International Journal of Heat and Mass Transfer, 47, 407-411.
https://doi.org/10.1016/S0017-9310(03)00361-2
[7]  Jo, H.J., Ahn, H.S., Kang, S.H., et al. (2011) A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces. International Journal of Heat and Mass Transfer, 54, 5643-5652.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.001
[8]  Dhillon, N.S., Buongiorno, J. and Varanasi, K.K. (2015) Critical Heat Flux Maxima during Boiling Crisis on Textured Surfaces. Nature Communications, 6, Article No. 8247.
https://doi.org/10.1038/ncomms9247
[9]  Betz, A.R., Jenkins, J. and Attinger, D. (2012) Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces. International Journal of Heat and Mass Transfer, 57, 733-741.
[10]  Gheitaghy, A.M., Saffari, H. and Zhang, G.Q. (2018) Effect of Nanostructured Microporous Surfaces on Pool Boiling Augmentation. Heat Transfer Engineering, 40, 762-771.
https://doi.org/10.1080/01457632.2018.1442310
[11]  Chu, K.H., Enright, R. and Wang, E.N. (2012) Structured Surfaces for Enhanced Pool Boiling Heat Transfer. Applied Physics Letters, 100, Article ID: 241603.
https://doi.org/10.1063/1.4724190
[12]  Chu, K.H., Soo Joung, Y., Enright, R., et al. (2013) Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement. Applied Physics Letters, 102, Article ID: 151602.
https://doi.org/10.1063/1.4801811
[13]  Dong, L., Quan, X. and Cheng, P. (2014) An Experimental Investigation of Enhanced Pool Boiling Heat Transfer from Surfaces with Micro/Nano-Structures. International Journal of Heat & Mass Transfer, 71, 189-196.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.068
[14]  Hsu, C.C. and Chen, P.H. (2012) Surface Wettability Effects on Critical Heat Flux of Boiling Heat Transfer Using Nanoparticle Coatings. International Journal of Heat & Mass Transfer, 55, 3713-3719.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.003
[15]  Betz, A.R., Xu, J., Qiu, H., et al. (2010) Do Surfaces with Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling? Applied Physics Letters, 97, Article ID: 141909.
https://doi.org/10.1063/1.3485057
[16]  Kruse, C., Lucis, M., Shield, J.E., et al. (2018) Effects of Femtosecond Laser Surface Processed Nanoparticle Layers on Pool Boiling Heat Transfer Performance. Journal of Thermal Science and Engineering Applications, 10, Article ID: 031009.
https://doi.org/10.1115/1.4038763
[17]  Bang, I.C. and Jeong, J.H. (2011) Nanotechnology for Advanced Nuclear Thermal-Hydraulics and Safety: Boiling and Condensation. Nuclear Engineering and Technology, 43, 217-242.
https://doi.org/10.5516/NET.2011.43.3.217
[18]  Lu, Y.W. and Kandlikar, S.G. (2011) Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions. Heat Transfer Engineering, 32, 827-842.
https://doi.org/10.1080/01457632.2011.548267
[19]  Kruse, C.M., Anderson, T., Wilson, C., et al. (2015) En-hanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces. International Journal of Heat and Mass Transfer, 82, 109-116.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.023
[20]  Hetsroni, G., Mosyak, A., Pogrebnyak, E., et al. (2006) Bubble Growth in Saturated Pool Boiling in Water and Surfactant Solution. International Journal of Multiphase Flow, 32, 159-182.
https://doi.org/10.1016/j.ijmultiphaseflow.2005.10.002
[21]  Demir, E., Izci, T., Alagoz, A.S., et al. (2014) Effect of Silicon Nanorod Length on Horizontal Nanostructured Plates in Pool Boiling Heat Transfer with Water. International Journal of Thermal Sciences, 82, 111-121.
https://doi.org/10.1016/j.ijthermalsci.2014.03.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133