|
Applied Physics 2020
飞秒激光制备微纳结构表面提升金属沸腾传热性能的研究
|
Abstract:
[1] | 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108. |
[2] | Shen, C., Zhang, C., Bao, Y., et al. (2018) Experimental Investigation on Enhancement of Nucleate Pool Boiling Heat Transfer Using Hybrid Wetting Pillar Surface at Low Heat Fluxes. International Journal of Thermal Sciences, 130, 47-58. https://doi.org/10.1016/j.ijthermalsci.2018.04.011 |
[3] | Ndao, S., Peles, Y. and Jensen, M.K. (2012) Experimental Investigation of Flow Boiling Heat Transfer of Jet Impingement on Smooth and Micro Structured Surfaces. International Journal of Heat and Mass Transfer, 55, 5093-5101.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.009 |
[4] | Yu, C.K., Lu, D.C. and Cheng, T.C. (2006) Pool Boiling Heat Transfer on Artificial Micro-Cavity Surfaces in Dielectric Fluid FC-72. Journal of Micromechanics and Microengineering, 16, 2092-2099.
https://doi.org/10.1088/0960-1317/16/10/024 |
[5] | Nguyen, C.T., Roy, G., Gauthier, C., et al. (2007) Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System. Applied Thermal Engineering, 27, 1501-1506.
https://doi.org/10.1016/j.applthermaleng.2006.09.028 |
[6] | Vassallo, P., Kumar, R. and D’Amico, S. (2004) Pool Boiling Heat Transfer Experiments in Silica-Water Nano-Fluids. International Journal of Heat and Mass Transfer, 47, 407-411. https://doi.org/10.1016/S0017-9310(03)00361-2 |
[7] | Jo, H.J., Ahn, H.S., Kang, S.H., et al. (2011) A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces. International Journal of Heat and Mass Transfer, 54, 5643-5652.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.001 |
[8] | Dhillon, N.S., Buongiorno, J. and Varanasi, K.K. (2015) Critical Heat Flux Maxima during Boiling Crisis on Textured Surfaces. Nature Communications, 6, Article No. 8247. https://doi.org/10.1038/ncomms9247 |
[9] | Betz, A.R., Jenkins, J. and Attinger, D. (2012) Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces. International Journal of Heat and Mass Transfer, 57, 733-741. |
[10] | Gheitaghy, A.M., Saffari, H. and Zhang, G.Q. (2018) Effect of Nanostructured Microporous Surfaces on Pool Boiling Augmentation. Heat Transfer Engineering, 40, 762-771. https://doi.org/10.1080/01457632.2018.1442310 |
[11] | Chu, K.H., Enright, R. and Wang, E.N. (2012) Structured Surfaces for Enhanced Pool Boiling Heat Transfer. Applied Physics Letters, 100, Article ID: 241603. https://doi.org/10.1063/1.4724190 |
[12] | Chu, K.H., Soo Joung, Y., Enright, R., et al. (2013) Hierarchically Structured Surfaces for Boiling Critical Heat Flux Enhancement. Applied Physics Letters, 102, Article ID: 151602. https://doi.org/10.1063/1.4801811 |
[13] | Dong, L., Quan, X. and Cheng, P. (2014) An Experimental Investigation of Enhanced Pool Boiling Heat Transfer from Surfaces with Micro/Nano-Structures. International Journal of Heat & Mass Transfer, 71, 189-196.
https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.068 |
[14] | Hsu, C.C. and Chen, P.H. (2012) Surface Wettability Effects on Critical Heat Flux of Boiling Heat Transfer Using Nanoparticle Coatings. International Journal of Heat & Mass Transfer, 55, 3713-3719.
https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.003 |
[15] | Betz, A.R., Xu, J., Qiu, H., et al. (2010) Do Surfaces with Mixed Hydrophilic and Hydrophobic Areas Enhance Pool Boiling? Applied Physics Letters, 97, Article ID: 141909. https://doi.org/10.1063/1.3485057 |
[16] | Kruse, C., Lucis, M., Shield, J.E., et al. (2018) Effects of Femtosecond Laser Surface Processed Nanoparticle Layers on Pool Boiling Heat Transfer Performance. Journal of Thermal Science and Engineering Applications, 10, Article ID: 031009. https://doi.org/10.1115/1.4038763 |
[17] | Bang, I.C. and Jeong, J.H. (2011) Nanotechnology for Advanced Nuclear Thermal-Hydraulics and Safety: Boiling and Condensation. Nuclear Engineering and Technology, 43, 217-242. https://doi.org/10.5516/NET.2011.43.3.217 |
[18] | Lu, Y.W. and Kandlikar, S.G. (2011) Nanoscale Surface Modification Techniques for Pool Boiling Enhancement—A Critical Review and Future Directions. Heat Transfer Engineering, 32, 827-842.
https://doi.org/10.1080/01457632.2011.548267 |
[19] | Kruse, C.M., Anderson, T., Wilson, C., et al. (2015) En-hanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces. International Journal of Heat and Mass Transfer, 82, 109-116.
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.023 |
[20] | Hetsroni, G., Mosyak, A., Pogrebnyak, E., et al. (2006) Bubble Growth in Saturated Pool Boiling in Water and Surfactant Solution. International Journal of Multiphase Flow, 32, 159-182.
https://doi.org/10.1016/j.ijmultiphaseflow.2005.10.002 |
[21] | Demir, E., Izci, T., Alagoz, A.S., et al. (2014) Effect of Silicon Nanorod Length on Horizontal Nanostructured Plates in Pool Boiling Heat Transfer with Water. International Journal of Thermal Sciences, 82, 111-121.
https://doi.org/10.1016/j.ijthermalsci.2014.03.015 |