全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

置于不同基底表面的单一金纳米粒子的近场特性
Near-Field Properties of a Single Gold Nanoparticle Placed on Various Substrate Surfaces

DOI: 10.12677/APP.2020.102018, PP. 147-152

Keywords: 飞秒激光,金纳米粒子,近场增强,超衍射极限
Femtosecond Laser
, Gold Nanoparticles, Near-Field Enhancement, Super Diffraction Limit

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用时域有限差分方法仿真研究了金粒子在金属(金),半导体(硅)和电介质(二氧化硅)基底表面经飞秒激光激发后的近场(电场)特性。仿真结果表明,在三种基底条件下,基底表面的电场均被增强,但电场的强度、空间分布以及尺寸大小均取决于基底材料。在金属基底和半导体基底条件下,电场被局限在粒子与基底的接触点周围。由于基底材料的不同,导致能够产生最大增强因子的共振波长发生偏移。该研究对于调控增强因子,实现超衍射极限纳米结构的精细加工具有重要意义。
In this paper, the finite-difference time-domain method is used to simulate the near-field (electric field) characteristics of a single gold nanoparticle on the surface of a metal (gold), semiconductor (silicon), and dielectric (silicon dioxide) substrate excited by a femtosecond laser. The simulation results show that the electric field on the substrate surface is enhanced under three substrate conditions, but the strength, spatial distribution, and size of the electric field all depend on the substrate material. Under the conditions of metal substrates and semiconductor substrates, the electric field is confined around the contact points between the particles and the substrate. Due to the difference of the base material, the resonance wavelength that can produce the maximum enhancement factor is shifted. This study is of great significance for regulating enhancement factors and achieving fine processing of ultra-diffraction-limited nanostructures.

References

[1]  Jersch, J. and Dickmann, K. (1996) Nanostructure Fabrication Using Laser Field Enhancement in the Near Field of a Scanning Tunneling Microscope tip. Applied Physics Letters, 68, 868-870
[2]  Kawata, S. (2001) Near-Field Optics and Surface Plasmon Polaritons. Springer, Berlin.
https://doi.org/10.1007/3-540-44552-8
[3]  Sakano, T., Tanaka, Y., et al. (2008) Surface Enhanced Raman Scattering Properties Using Au-Coated ZnO Nanorods Grown by Two-Step, Off-Axis Pulsed Laser Deposition. Journal of Physics D: Applied Physics, 41, Article ID: 235304.
https://doi.org/10.1088/0022-3727/41/23/235304
[4]  Takada, H., Obara, M., et al. (2005) Fabrication of Hexagonally Arrayed Nanoholes Using Femtosecond Laser Pulse Ablation with Template of Subwavelength Polystyrene Particle Array. Japanese Journal of Applied Physics, 44, 7993-7997.
https://doi.org/10.1143/JJAP.44.7993
[5]  Huang, S.M., Hong, M.H., et al. (2002) Pulsed Laser-Assisted Surface Structuring with Optical Near-Field Enhanced Effects. Journal of Applied Physics, 92, 2495-2500.
https://doi.org/10.1063/1.1501768
[6]  Huang, S.M., Hong, M.H., et al. (2003) Nanostructures Fabricated on Metal Surfaces Assisted by Laser with Optical Near-Field Effects. Applied Physics A: Materials Science & Processing, 77, 293-296.
https://doi.org/10.1007/s00339-003-2115-7
[7]  Afanasiev, A., Bredikhin, V., et al. (2015) Two-Color Beam Improvement of the Colloidal Particle Lens Array Assisted Surface Nanostructuring. Applied Physics Letters, 106, Article ID: 183102.
https://doi.org/10.1063/1.4919898
[8]  Bityurin, N.M., Afanasiev, A.V., et al. (2014) Surface Nanostructuring by Bichromatic Femtosecond Laser Pulses through a Colloidal Particle Array. Quantum Electronics, 44, 556-562.
https://doi.org/10.1070/QE2014v044n06ABEH015447
[9]  Messinger, B.J., Von Raben, K.U., et al. (1981) Local Fields at the Surface of Noble-Metal Microspheres. Physical Review B, 24, 649-657.
https://doi.org/10.1103/PhysRevB.24.649
[10]  Nedyalkov, N.N., Atanasov, P.A., et al. (2007) Near-Field Properties of a Gold Nanoparticle Array on Different Substrates Excited by a Femtosecond Laser. Nanotechnology, 18, Article ID: 305703.
https://doi.org/10.1088/0957-4484/18/30/305703
[11]  Gozhenko, V.V., Grechko, L.G., et al. (2003) Electrodynamics of Spatial Clusters of Spheres: Substrate Effects. Physical Review B, 68, Article ID: 125422.
https://doi.org/10.1103/PhysRevB.68.125422
[12]  Notingher, I., Elfick, A., et al. (2005) Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips. The Journal of Physical Chemistry B, 109, 15699-15706.
https://doi.org/10.1021/jp0523120
[13]  Nedyalkov, N., Sakai, T., et al. (2006) Near Field Properties in the Vicinity of Gold Nanoparticles Placed on Various Substrates for Precise Nanostructuring. Journal of Physics D (Applied Physics), 39, 5037-5042.
https://doi.org/10.1088/0022-3727/39/23/021
[14]  Nedyalkov, N.N., Miyanishi, T., et al. (2007) Enhanced Near-Field Mediated Nanohole Fabrication on Silicon Substrate by Femtosecond Laser Pulse. Applied Surface Science, 253, 6558-6562.
https://doi.org/10.1016/j.apsusc.2007.01.025
[15]  Tanaka, Y., Nedyalkov, N.N., et al. (2009) Enhanced Near-Field Distribution inside Substrates Mediated with Gold Particle: Optical Vortex and Bifurcation. Applied Physics A, 97, 91-98.
https://doi.org/10.1007/s00339-009-5354-4
[16]  Newton, R.G. (1981) Light Scattering by Small Particles. Dover Publications, Mineola.
[17]  Tanaka, Y. and Obara, M. (2009) Comparison of Resonant Plasmon Polaritons with Mie Scattering for Laser-Induced Near-Field Nanopatterning: Metallic Particle vs Dielectric Particle. Japanese Journal of Applied Physics, 48, Article ID: 122002.
https://doi.org/10.1143/JJAP.48.122002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133