全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

ZnO纳米棒阵列/三维石墨烯异质结的制备及光催化性能研究
Preparation and Photocatalytic Properties of ZnO Nanorod Arrays/3D Graphene

DOI: 10.12677/APP.2020.102017, PP. 139-146

Keywords: ZnO,三维石墨烯,异质结,光催化
ZnO
, 3D Graphene, Hybrids, Photocatalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用CVD法在泡沫镍基底上生长三维石墨烯,再用水热法制备ZnO纳米棒阵列/三维石墨烯异质结。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼(Raman)等表征方法对ZnO纳米棒阵列/三维石墨烯异质结的形貌和结构进行了分析,结果表明:生长时间为3小时的ZnO纳米棒阵列分布最为密集。紫外–可见光谱(UV-VIS)和光致发光(PL)表征结果表明:与纯ZnO纳米棒阵列相比,石墨烯与ZnO纳米棒阵列的结合可以稍微减小ZnO纳米棒阵列的带隙,降低光致发光强度。光催化实验表明:在氙灯下照射1小时后,ZnO纳米棒阵列/三维石墨烯异质结降解率达到91%,而ZnO纳米棒阵列的降解率仅为61%。而且,经过4次重复催化实验后,ZnO纳米棒阵列/三维石墨烯异质结的降解率仍可达到84%。
In this paper, CVD method was used to grow three-dimensional (3D) graphene on foam nickel, and then ZnO nanorod array was prepared on the as-synthesized 3D graphene foam by hydrothermal method. The morphology and structure of the ZnO nanorod array/3D graphene hybrids were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD), Raman and other characterization methods. The results showed that the ZnO nanorod arrays with the growth time of 3 hours are most densely distributed. UV-VIS absorption spectra (UV-VIS) and photoluminescence (PL) characterization results showed that compared with pure ZnO nanorod arrays, the combination of graphene and ZnO nanorod arrays can slightly decrease the band gap and reduce the PL intensity of ZnO nanorod arrays. Afterward, the photocatalytic performance of the samples was evaluated. The results showed that after the exposure to xenon lamp with 1 hour, the degradation rate of ZnO nanorod array/3D graphene hybrids reached 91%, while the degradation rate of ZnO nanorod array just reached 61%. More importantly, after four regeneration cycles, the photocatalytic efficiency of ZnO nanorod array/3D graphene hybrids still remained 84%.

References

[1]  Zou, Z.G., Ye, J.H., Sayama, K. and Arakawa, H. (2001) Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst. Nature, 414, 625-627.
https://doi.org/10.1038/414625a
[2]  刘自力, 刘宏伟, 李茹. Cu2O光催化还原含铬(VI)废水的研究[J]. 高校化学工程学报, 2007, 21(1): 88-92.
[3]  Xu, F., Zhang, P., Navrotsky, A., et al. (2007) Hierarchically Assembled Porous ZnO Nanoparticles: Synthesis, Surface Energy, and Photocatalytic Activity. Chemistry of Materials, 19, 5680-5686.
https://doi.org/10.1021/cm071190g
[4]  Tariq, I., Khan, M.A. and Hasan, M. (2018) Facile Synthesis of ZnO Nanosheets: Structural, Antibacterial and Photocatalytic Studies. Materials Letters, 224, 59-63.
https://doi.org/10.1016/j.matlet.2018.04.078
[5]  Zheng, W.P., Zu, R.D. and Zhong, L.W. (2001) Nanobelts of Semiconducting Oxides. Science, 291, 1947-1949.
https://doi.org/10.1126/science.1058120
[6]  Huang, J.R., Wu, Y.J., Gu, C.P., et al. (2010) Large-Scale Synthesis of Flowerlike ZnO Nanostructure by a Simple Chemical Solution Route and Its Gas-Sensing Property. Sensors and Actuators B: Chemical, 146, 206-212.
https://doi.org/10.1016/j.snb.2010.02.052
[7]  潘吉浪, 尹荔松, 范海陆, 等. 纳米ZnO光催化降解有机物研究进展[J]. 纳米材料与应用, 2006, 3(5): 18-21.
[8]  Yang, Y. and Liu, T. (2011) Fabrication and Characterization of Graphene Oxide/Zinc Oxide Nanorods Hybrid. Applied Surface Science, 257, 8950-8954.
https://doi.org/10.1016/j.apsusc.2011.05.070
[9]  Zhou, X., Shi, T. and Zhou, H. (2012) Hydrothermal Preparation of ZnO-Reduced Graphene Oxide Hybrid with High Performance in Photocatalytic Degradation. Applied Surface Science, 258, 6204-6211.
https://doi.org/10.1016/j.apsusc.2012.02.131
[10]  Xue, B. and Zou, Y. (2018) High Photocatalytic Activity of ZnO-Graphene Composite. Journal of Colloid and Interface Science, 529, 306-313.
https://doi.org/10.1016/j.jcis.2018.04.040
[11]  Wang, S., Zhang, Y., zhang, T., Dong, F. and Huang, H. (2017) Readily Attainable Spongy Foam Photocatalyst for Promising Practical Photocatalysis. Applied Catalysis B: Environmental, 208, 75-81.
https://doi.org/10.1016/j.apcatb.2017.02.033
[12]  Wang, X., Zhang, Y., Hao, C., Feng, F., Yin, H. and Si, N. (2014) Solid-Phase Synthesis of Mesoporous ZnO Using Lignin-Amine Template and Its Photocatalytic Properties. Industrial & Engineering Chemistry Research, 53, 6585-6592.
https://doi.org/10.1021/ie404179f
[13]  Weng, B., Yang, M.-Q., Zhang, N. and Xu, Y.-J. (2014) Toward the Enhanced Photoactivity and Photostability of ZnO Nanospheres via Intimate Surface Coating with Reduced Graphene Oxide. Journal of Materials Chemistry A, 2, 9380.
https://doi.org/10.1039/c4ta01077a
[14]  Ahmad, M., Ahmed, E., Hong, Z.L., Xu, J.F., Khalid, N.R., Elhissi, A. and Ahmed, W. (2013) A Facile One-Step Approach to Synthesizing ZnO/Graphene Composites for Enhanced Degradation of Methylene Blue under Visible Light. Applied Surface Science, 274, 273-281.
https://doi.org/10.1016/j.apsusc.2013.03.035
[15]  Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G. and Sun, Z. (2011) Enhanced Photocatalytic Degradation of Methylene Blue by ZnO-Reduced Graphene Oxide Composite Synthesized via Microwave-Assisted Reaction. Journal of Alloys and Compounds, 509, 10086-10091.
https://doi.org/10.1016/j.jallcom.2011.08.045
[16]  Kalantari Bolaghi, Z., Masoudpanah, S.M. and Hasheminiasari, M. (2019) Photocatalytic Activity of ZnO/RGO Composite Synthesized by One-Pot Solution Combustion Method. Materials Research Bulletin, 115, 191-195.
https://doi.org/10.1016/j.materresbull.2019.03.024
[17]  Lee, J.S., You, K.H. and Park, C.B. (2012) Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene. Advanced Materials, 24, 1084-1088.
https://doi.org/10.1002/adma.201104110
[18]  Zhou, K., Zhu, Y., Yang, X., Jiang, X. and Li, C. (2011) Preparation of Graphene-TiO2 Composites with Enhanced Photocatalytic Activity. New Journal of Chemistry, 35, 353-359.
https://doi.org/10.1039/C0NJ00623H
[19]  Zhang, N., Yang, M.-Q., Tang, Z.-R. and Xu, Y.-J. (2013) CdS-Graphene Nanocomposites as Visible Light Photocatalyst for Redox Reactions in Water: A Green Route for Selective Transformation and Environmental Remediation. Journal of Catalysis, 303, 60-69.
https://doi.org/10.1016/j.jcat.2013.02.026

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133