全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

界面调控VO2薄膜金属–绝缘相变研究
Manipulating Metal-Insulator Transition in VO2 Film via Interfaces

DOI: 10.12677/APP.2020.102021, PP. 168-175

Keywords: 表面重构,斜切,a面蓝宝石,VO2薄膜,MIT各向异性
Surface Reconstruction
, Chamfering, A-Plane Sapphire, VO2 Film, MIT Anisotropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文选取目前发现的能够在最接近室温的条件下产生金属–绝缘转变(MIT)的氧化物功能材料VO2薄膜为研究对象,探究表面重构的斜切a面蓝宝石基底对VO2薄膜结构与性质的调控作用。通过高温退火处理使朝[0001]方向斜切0?、1?、3?的a面蓝宝石基底表面重构,并用原子力显微镜观察到斜切基片重构后表面形成峰–谷形状的沟槽。使用脉冲激光沉积法在斜切基片上制备VO2薄膜,XRD表征显示成功制备了外延的VO2薄膜。为了精确表征朝[0001]方向的不同斜切角度的a面蓝宝石基片上VO2薄膜晶格常数的变化,分别在面内与面外进行了倒空间扫描并计算了VO2薄膜的晶格常数。倒空间结果表明斜切0?的基片为VO2薄膜引入应变。通过范德堡法测试了朝[0001]方向斜切基片上的VO2薄膜的电阻,朝[0001]方向斜切的基片上获得了高度应变的薄膜,随着相变温度的升高,调控了MIT的性能。
VO2 is a kind of oxide functional materials with unique metal-insulator transitions (MITs) near room temperature. In this paper, we explore the roles of surface-reconstructed a-plane sapphire substrates on their structure and properties. The microstructures on a-plane sapphire substrates formed by 0?, 1? and 3? miscut along with [0001]. The surface of the sapphire will be reconstructed after annealing, and the surface step terrances will be formed on the sapphire surface. The pulsed laser deposition was used to grow VO2 films on the a-plane sapphire substrates. XRD was used to characterize the structural properties of the films. XRD results show that we have prepared epitaxial VO2 films on a-plane sapphire substrates. The reciprocal space mapping (RSM) results show that the a-plane sapphire without miscut introduces strains into the films. The changes in VO2 film resistances with various temperatures are studied by van der pauw method. The results show that the phase transition temperature is increased with the interfacial strain, which would tune MIT. These results open the ways for exploring and designing heteroepitaxial materials for nanoelectronic devices.

References

[1]  Wu, C.Z, Feng, F. and Xie, Y. (2013) Design of Vanadium Oxide Structures with Controllable Electrical Properties for Energy Applications. Chemical Society Reviews, 42, 5157-5183.
https://doi.org/10.1039/c3cs35508j
[2]  Ji, Y.D., Zhang, Y., Gao, M., et al. (2014) Role of Microstructures on the M1-M2 Phase Transition in Epitaxial VO2 Thin Films. Scientific Reports, 4, 4854.
https://doi.org/10.1038/srep04854
[3]  Lin, Y. and Chen, C.L. (2009) Interface Effects on Highly Epitaxial Ferroelectric Thin Films. Journal of Materials Science, 44, 5274-5287.
https://doi.org/10.1007/s10853-009-3664-8
[4]  Fan, L.L., Chen, S., Luo, Z.L., et al. (2014) Strain Dynamics of Ultrathin VO2 Film Grown on TiO2 (001) and the Associated Phase Transition Modulation. Nano Letters, 14, 4036-4043.
https://doi.org/10.1021/nl501480f
[5]  Aetukuri, N.B., Gray, A.X., Drouard, M., et al. (2013) Control of the Metal-Insulator Transition in Vanadium Dioxide by Modifying Orbital Occupancy. Nature Physics, 9, 661-666.
https://doi.org/10.1038/nphys2733
[6]  Lu, J.W., West, K.G. and Wolf, S.A. (2008) Very Large Anisotropy in the DC Conductivity of Epitaxial VO2 Thin Films Grown on (011) Rutile TiO2 Substrates. Applied Physics Letters, 93, 262107.
https://doi.org/10.1063/1.3058769
[7]  Kittiwatanakul, S., Lu, J.W. and Wolf, S.A. (2011) Transport Anisotropy of Epitaxial VO2 Films near the Metal-Semiconductor Transition. Applied Physics Express, 4, 091104.
https://doi.org/10.1143/APEX.4.091104
[8]  Ji, Y.D., Pan, T.S., Bi, Z., et al. (2012) Epitaxial Growth and Metal-Insulator Transition of Vanadium Oxide Thin Films with Controllable Phases. Applied Physics Letters, 101, 071902
https://doi.org/10.1063/1.4745843
[9]  Katase, T., Endo, K. and Ohta, H. (2014) Thermopower Analysis of the Electronic Structure around the Metal-Insulator Transition in V1-xWxO2. Physical Review B, 90, 161105.
https://doi.org/10.1103/PhysRevB.90.161105
[10]  Jin, P., Yoshimura, K. and Tanemura, S. (1997) Dependence of Microstructure and Thermochromism on Substrate-Temperature for Sputter-Deposited VO2 Epitaxial-Films. Journal of Vacuum Science & Technology A, 15, 1113-1117.
https://doi.org/10.1116/1.580439
[11]  Ji, Y.D., Yang, Q., Zhang, X.Y., et al. (2019) Tuning Critical Phase Transition in VO2 via Interfacial Control of Normal and Shear Strain. Applied Physics Letters, 11, 201603.
https://doi.org/10.1063/1.5128780
[12]  Aetukuri, N.B., Gray, A.X., Drouard, M., et al. (2013) Control of the Metal-Insulator Transition in Vanadium Dioxide by Modifying Orbital Occupancy. Nature Physics, 9, 661-666.
https://doi.org/10.1038/nphys2733

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133