全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同温度下飞秒激光制备的微纳结构表面对撞击液滴运动行为的影响
Effect of Surfaces of Micro-Nano Structures Prepared by Femtosecond Lasers on Motion of Impacting Droplets at Different Temperatures

DOI: 10.12677/APP.2020.102020, PP. 161-167

Keywords: 飞秒激光,微纳形貌,高温环境,Leidenfrost状态,撞击液滴
Femtosecond Laser
, Micro-Nano Morphology, High Temperature Environment, Leidenfrost State, Impact Droplet

Full-Text   Cite this paper   Add to My Lib

Abstract:

液滴撞击固体表面的现象对于防冰、传热和水管理等技术领域具有重要的意义。不同于常温和低温条件,当固体表面温度升高到一定范围时,撞击表面的液滴会处于一种名为Leidenfrost的热状态,此时液滴会变得相当活跃。在这种状态下,分析撞击液滴的运动行为是很有挑战性的。在本文中,我们通过飞秒激光加工技术制备出了不同形貌的微纳结构表面,通过对比超亲水和超疏水两种极端润湿性表面在不同温度下的液滴撞击行为,分析了温度对撞击表面的液滴运动行为的影响规律。该研究对液滴动力学的理解与控制具有重要意义,并且为未来高温多功能表面的应用开辟了新的思路。
The phenomenon of droplets hitting a solid surface is of great significance for technical fields such as ice protection, heat transfer and water management. Unlike normal and low temperature conditions, when the solid surface temperature rises to a certain range, the droplets hitting the surface will be in a thermal state called Leidenfrost, at which time the droplets will become quite active. In this state, analyzing the motion behavior of the impacting droplets is very challenging. In this paper, we prepared micro-nano structured surfaces with different morphologies by using femtosecond laser processing technology. By comparing the impact behavior of droplets of two types of ultra-wettable and ultra-hydrophobic surfaces with different wettability at different temperatures, we analyzed the influence of temperature on the motion of droplets hitting the surface. This research is of great significance for understanding and controlling droplet dynamics, and opens up new ideas for the application of high temperature multifunctional surfaces in the future.

References

[1]  Richard, D. and Clanet, C.R. (2002) Contact Time of a Bouncing Drop. Nature, 417, 811.
https://doi.org/10.1038/417811a
[2]  Chaudhury, M.K., Chakrabarti, A. and Daniel, S. (2015) Generation of Motion of Drops with Interfacial Contact. Langmuir, 31, 9266-9281.
https://doi.org/10.1021/la504925u
[3]  Hou, Y., Chen, Y., Xue, Y., et al. (2012) Stronger Water Hanging Ability and Higher Water Collection Efficiency of Bioinspired Fiber with Multi-Gradient and Multi-Scale Spindle Knots. Soft Matter, 8, 11236.
https://doi.org/10.1039/c2sm26421h
[4]  孙炎俊. 液滴撞击热固体表面动态特性实验研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2018.
[5]  Hu, H.B., Chen, L.B., et al. (2013) Rebound Behaviors of Droplets Impacting on a Superhydrophobic Surface. Science China Physics Mechanics & Astronomy, 56, 960-965.
https://doi.org/10.1007/s11433-012-4968-2
[6]  De Ruiter, J., Lagraauw, R., Dirk, V.D.E., et al. (2014) Wettability-Independent Bouncing on Flat Surfaces Mediated by Thin Air Films. Nature Physics, 11, 48-53.
https://doi.org/10.1038/nphys3145
[7]  Antonini, C., Villa, F., Bernagozzi, I., et al. (2013) Drop Rebound after Impact: The Role of the Receding Contact Angle. Langmuir, 29, 16045-16050.
https://doi.org/10.1021/la4012372
[8]  Pano, M.R.O. and Moreira, A.L.N. (2005) Flow Characteristics of Spray Impingement in PFI Injection Systems. Experiments in Fluids, 39, 364-374.
https://doi.org/10.1007/s00348-005-0996-2
[9]  Pasandideh-Fard, M., Aziz, S.D., Chandra, S., et al. (2001) Cooling Effectiveness of a Water Drop Impinging on a Hot Surface. International Journal of Heat and Fluid Flow, 22, 201-210.
https://doi.org/10.1016/S0142-727X(00)00086-2
[10]  Labergue, A., Gradeck, M. and Lemoine, F. (2016) Experimental Investigation of Spray Impingement Hydrodynamic on a Hot Surface at High Flow Rates Using Phase Doppler Analysis and Infrared Thermography. International Journal of Heat and Mass Transfer, 100, 65-78.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.041
[11]  Zama, Y., Odawara, Y. and Furuhata, T. (2017) Experimental Investigation on Velocity inside a Diesel Spray after Impingement on a Wall. Fuel, 203, 757-763.
https://doi.org/10.1016/j.fuel.2017.04.099
[12]  Yang, J., Dong, X., Wu, Q., et al. (2018) Influence of Flash Boiling Spray on the Combustion Characteristics of a Spark-Ignition Direct-Injection Optical Engine under Cold Start. Combustion and Flame, 188, 66-76.
https://doi.org/10.1016/j.combustflame.2017.09.019
[13]  Pei, Y., Qin, J., Li, X., et al. (2017) Experimental Investigation on Free and Impingement Spray Fueled with Methanol, Ethanol, Isooctane, TRF and Gasoline. Fuel, 208, 174-183.
https://doi.org/10.1016/j.fuel.2017.07.011
[14]  刘嵩. 飞秒激光制备微纳米周期结构的热辐射特性研究[D]: [博士学位论文]. 北京: 北京工业大学, 2016.
[15]  泮怀海, 王卓, 范文中, 等. 飞秒激光诱导超疏水钛表面微纳结构[J]. 中国激光, 2016, 43(8): 95-101.
[16]  陶海岩. 飞秒激光固体材料表面微纳结构制备及其功能特性的研究[D]: [博士学位论文]. 长春: 长春理工大学, 2014.
[17]  Shinoda, M., Gattass, R.R. and Mazur, E. (2009) Femtosecond Laser-Induced Formation of Nanometer-Width Grooves on Synthetic Single-Crystal Diamond Surfaces. Journal of Applied Physics, 105, Article ID: 053102.
https://doi.org/10.1063/1.3079512
[18]  Ionin, A.A., Kudryashov, S.I., Makarov, S.V., et al. (2013) Sub-100 Nanometer Transverse Gratings Written by Femtosecond Laser Pulses on a Titanium Surface. Laser Physics Letters, 10, Article ID: 056004.
https://doi.org/10.1088/1612-2011/10/5/056004
[19]  Li, J., Hou, Y., Liu, Y., et al. (2016) Directional Transport of High-Temperature Janus Droplets Mediated by Structural Topography. Nature Physics, 12, 606-612.
https://doi.org/10.1038/nphys3643
[20]  Long, J., Fan, P., Jiang, D., et al. (2016) Anisotropic Sliding of Water Droplets on the Superhydrophobic Surfaces with Anisotropic Groove-Like Micro/Nano Structures. Advanced Materials Interfaces, 2016, Article ID: 1600641.
https://doi.org/10.1002/admi.201600641
[21]  Bhushan, B. and Nosonovsky, M. (2010) The Rose Petal Effect and the Modes of Superhydrophobicity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 4713-4728.
https://doi.org/10.1098/rsta.2010.0203

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133